login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007924
The number n written using the greedy algorithm in the base where the values of the places are 1 and primes.
9
0, 1, 10, 100, 101, 1000, 1001, 10000, 10001, 10010, 10100, 100000, 100001, 1000000, 1000001, 1000010, 1000100, 10000000, 10000001, 100000000, 100000001, 100000010, 100000100, 1000000000, 1000000001, 1000000010, 1000000100, 1000000101
OFFSET
0,3
COMMENTS
Any nonnegative number can be written as a sum of distinct primes + e, where e is 0 or 1.
Terms contain only digits 0 and 1.
Without the "greedy" condition there is ambiguity - for example 5 = 3+2 has two representations.
REFERENCES
S. S. Pillai, "An arithmetical function concerning primes", Annamalai University Journal (1930), pp. 159-167.
LINKS
K. Kashihara, Comments and Topics on Smarandache Notions and Problems, Erhus University Press, 1996, 50 pages. See page 33.
K. Kashihara, Comments and Topics on Smarandache Notions and Problems, Erhus University Press, 1996, 50 pages. [Cached copy] See page 33.
Florian Luca & Ravindranathan Thangadurai, On an arithmetic function considered by Pillai, Journal de théorie des nombres de Bordeaux 21:3 (2009), pp. 695-701.
C. Rivera, Prime puzzle 78
F. Smarandache, Definitions, Solved and Unsolved Problems, Conjectures, and Theorems in Number Theory and Geometry, edited by M. Perez, Xiquan Publishing House 2000.
FORMULA
a(n) is the binary representation of b(n) = 2^pi(n) + b(n-p(pi(n))) for n > 0 and a(0) = b(0)= 0, where pi(k) = number of primes <= k (A000720) and p(k) = k-th prime (A008578). - Frank Ellermann, Dec 18 2001
EXAMPLE
4 = 3 + 1, so a(4) = 101.
MATHEMATICA
cprime[n_Integer] := (If[n==0, 1, Prime[n]]); gentable[n_Integer] := (m=n; ptable={}; While[m!=0, (i=0; While[cprime[i]<=m, i++]; j=0; While[j<i, AppendTo[ptable, 0]; j++]; ptable[[i]]=1; m=m-cprime[i-1])]; ptable); decimal[n_Integer] := (gentable[n]; Sum[2^(k-1)*ptable[[k]], {k, 1, Length[ptable]}]); Table[IntegerString[decimal[n], 2], {n, 0, 100}](* Frank M Jackson, Jan 06 2012 *)
PROG
(PARI) a(n)=if(n>1, my(p=precprime(n)); 10^primepi(p)+a(n-p), n) \\ Charles R Greathouse IV, Feb 01 2013
CROSSREFS
Subsequence of A007088.
Sequence in context: A211027 A328072 A185101 * A115794 A105424 A115832
KEYWORD
nonn,easy
AUTHOR
R. Muller
EXTENSIONS
Additional references from Felice Russo, Sep 14 2001
Antedated to 1930 by Charles R Greathouse IV, Aug 28 2010
Definition clarified by Frank M Jackson and N. J. A. Sloane, Dec 30 2011
STATUS
approved