login
A200947
Sequence A007924 expressed in decimal.
11
0, 1, 2, 4, 5, 8, 9, 16, 17, 18, 20, 32, 33, 64, 65, 66, 68, 128, 129, 256, 257, 258, 260, 512, 513, 514, 516, 517, 520, 1024, 1025, 2048, 2049, 2050, 2052, 2053, 2056, 4096, 4097, 4098, 4100, 8192, 8193, 16384, 16385, 16386, 16388, 32768, 32769, 32770
OFFSET
0,3
LINKS
Wikipedia, "Complete" sequence. [Wikipedia calls a sequence "complete" (sic) if every positive integer is a sum of distinct terms. This name is extremely misleading and should be avoided. - N. J. A. Sloane, May 20 2023]
FORMULA
a(n) = decimal(A007924(n)).
a(n) mod 2 = A121559(n) for n>=1. - Alois P. Heinz, Jun 12 2023
EXAMPLE
8=7+1, hence A007924(8)=10001, so a(8)=17.
MAPLE
a:= proc(n) option remember; local m, p, r; m:=n; r:=0;
while m>0 do
if m=1 then r:=r+1; break fi;
p:= prevprime(m+1); m:= m-p;
r:= r+2^numtheory[pi](p)
od; r
end:
seq(a(n), n=0..52); # Alois P. Heinz, Jun 12 2023
MATHEMATICA
cprime[n_Integer] := If[n==0, 1, Prime[n]]; gentable[n_Integer] := (m=n; ptable={}; While[m != 0, (i = 0; While[cprime[i] <= m, i++]; j=0; While[j<i, AppendTo[ptable, 0]; j++]; ptable[[i]]=1; m=m-cprime[i-1])]; ptable); decimal[n_Integer] := (gentable[n]; Sum[2^(k - 1)*ptable[[k]], {k, 1, Length[ptable]}]); Table[decimal[n], {n, 0, 100}]
KEYWORD
nonn
AUTHOR
Frank M Jackson, Nov 24 2011
EXTENSIONS
Edited by N. J. A. Sloane, May 20 2023
STATUS
approved