This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006551 Maximal Eulerian numbers. (Formerly M3426) 5
 1, 1, 4, 11, 66, 302, 2416, 15619, 156190, 1310354, 15724248, 162512286, 2275172004, 27971176092, 447538817472, 6382798925475, 114890380658550, 1865385657780650, 37307713155613000, 679562217794156938, 14950368791471452636 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS From Peter Luschny, Aug 08 2010: (Start) Define A(n,k) as the number of permutations of {1,2,..,n} with k ascents. A(n,k) = sum_{j=0}^k (-1)^j binomial(n+1,j)(k-j+1)^n. Then a(n) = A(n, floor(n/2)). The Digital Library of Mathematical Functions calls the A(n,k) Eulerian numbers. With this terminology a(n) are the middle Eulerian numbers and A180056 the central Eulerian numbers. (End) Number of permutations of {1,2,..,n} with floor(n/2) descents. - Joerg Arndt, Aug 15 2014 REFERENCES L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Alois P. Heinz, Table of n, a(n) for n = 1..450 Digital Library of Mathematical Functions, Table 26.14.1 [Peter Luschny, Aug 08 2010] L. Lesieur and J.-N. Nicolas, On the Eulerian numbers M_n = max_{1<=k<=n} A(n,k), European J. Combin., 13 (1992), 379-399. R. G. Wilson, V, Letter to N. J. A. Sloane, Apr. 1994 FORMULA a(n) = sum_{0<=j<=floor(n/2)} (-1)^j binomial(n+1,j) (floor(n/2)-j+1)^n. [Peter Luschny, Aug 08 2010] a(n+1)/a(n) ~ n. - Ran Pan, Oct 26 2015 MAPLE a := proc(n) local j, k; k := iquo(n, 2); add((-1)^j*binomial(n+1, j)*(k-j+1)^n, j=0..k) end: #  Peter Luschny, Aug 08 2010 # Computation by recursion: A006551 := proc(r) local W; W := proc(m) local A, n, k; A:=[seq(1, n=1..m)]; if m < 2 then RETURN(1) fi; for n from 2 to m-1 do for k from 2 to m do A[k] := n*A[k-1]+k*A[k] od od; [A[m-1], A[m]] end: W((r+2+irem(r, 2))/2)[2-irem(r, 2)] end: # Peter Luschny, Jan 12 2011 MATHEMATICA a[n_] := With[{k = Quotient[n, 2]}, Sum[(-1)^j*Binomial[n+1, j]*(k-j+1)^n, {j, 0, k}]]; Array[a, 25] (* Jean-François Alcover, Feb 19 2017, after Peter Luschny *) CROSSREFS Cf. A008292. Bisections are A025585 and A180056. Sequence in context: A266386 A134823 A000880 * A274960 A151826 A032110 Adjacent sequences:  A006548 A006549 A006550 * A006552 A006553 A006554 KEYWORD nonn,changed AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.