login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006550
n+8*C(n,2)+30*C(n,3)+62*C(n,4)+75*C(n,5)+30*C(n,6).
3
0, 1, 10, 57, 234, 770, 2136, 5180, 11292, 22599, 42190, 74371, 124950, 201552, 313964, 474510, 698456, 1004445, 1414962, 1956829, 2661730, 3566766, 4715040, 6156272, 7947444, 10153475, 12847926, 16113735, 20043982, 24742684, 30325620
OFFSET
1,3
REFERENCES
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 254, gives this as number of ways to color faces of a cube using at most n colors, but the formula is incorrect - see A047780.
LINKS
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
MAPLE
A006550:=(-1-3*z-8*z**2-10*z**3-14*z**4+6*z**5)/(z-1)**7; # conjectured by Simon Plouffe in his 1992 dissertation
MATHEMATICA
Table[n+8Binomial[n, 2]+30Binomial[n, 3]+62Binomial[n, 4]+75Binomial[n, 5]+ 30Binomial[n, 6], {n, 0, 40}] (* or *) LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 1, 10, 57, 234, 770, 2136}, 40] (* Harvey P. Dale, Apr 24 2011 *)
CROSSREFS
Sequence in context: A378894 A067250 A061005 * A047780 A055251 A038733
KEYWORD
nonn
EXTENSIONS
Jud McCranie found this error and gave the correct version of this sequence (A047780).
STATUS
approved