The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005393 Leading term of Stirling's approximation to n!, sqrt(2*Pi)*n^(n+(1/2))/e^n, rounded down. 2
 0, 0, 1, 5, 23, 118, 710, 4980, 39902, 359536, 3598695, 39615625, 475687486, 6187239475, 86661001740, 1300430722199, 20814114415223, 353948328666100, 6372804626194309, 121112786592293963, 2422786846761133393, 50888617325509644403 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS G. C. Greubel, Table of n, a(n) for n = 0..150 Wikipedia, Stirling's Approximation FORMULA a(n) = floor(sqrt(2*Pi)*n^(n+(1/2))/e^n). - Wesley Ivan Hurt, Jun 11 2016 MAPLE A005393:=n->floor(sqrt(2*Pi)*n^(n+(1/2))/exp(1)^n): seq(A005393(n), n=0..30); # Wesley Ivan Hurt, Jun 11 2016 MATHEMATICA Table[Floor[Sqrt[2*Pi]*n^(n + 1/2)*Exp[-n]], {n, 0, 50}] (* G. C. Greubel, Jun 11 2016 *) PROG (PARI) for(n=0, 50, print1(floor(sqrt(2*Pi)*n^(n+(1/2))*exp(-n)), ", ")) \\ G. C. Greubel, Aug 16 2018 (MAGMA) R:= RealField(); [Floor(Sqrt(2*Pi(R))*n^(n+(1/2))/Exp(n)): n in [0..50]]; // G. C. Greubel, Aug 16 2018 CROSSREFS Cf. (rounded up) A005395. Sequence in context: A073596 A167248 A321798 * A193704 A294356 A162815 Adjacent sequences:  A005390 A005391 A005392 * A005394 A005395 A005396 KEYWORD nonn,easy AUTHOR EXTENSIONS a(12) onwards corrected by Sean A. Irvine, Jun 11 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 4 16:18 EDT 2021. Contains 346447 sequences. (Running on oeis4.)