Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Sep 08 2022 08:44:33
%S 0,0,1,5,23,118,710,4980,39902,359536,3598695,39615625,475687486,
%T 6187239475,86661001740,1300430722199,20814114415223,353948328666100,
%U 6372804626194309,121112786592293963,2422786846761133393,50888617325509644403
%N Leading term of Stirling's approximation to n!, sqrt(2*Pi)*n^(n+(1/2))/e^n, rounded down.
%H G. C. Greubel, <a href="/A005393/b005393.txt">Table of n, a(n) for n = 0..150</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Stirling%27s_approximation">Stirling's Approximation</a>
%F a(n) = floor(sqrt(2*Pi)*n^(n+(1/2))/e^n). - _Wesley Ivan Hurt_, Jun 11 2016
%p A005393:=n->floor(sqrt(2*Pi)*n^(n+(1/2))/exp(1)^n): seq(A005393(n), n=0..30); # _Wesley Ivan Hurt_, Jun 11 2016
%t Table[Floor[Sqrt[2*Pi]*n^(n + 1/2)*Exp[-n]], {n, 0, 50}] (* _G. C. Greubel_, Jun 11 2016 *)
%o (PARI) for(n=0,50, print1(floor(sqrt(2*Pi)*n^(n+(1/2))*exp(-n)), ", ")) \\ _G. C. Greubel_, Aug 16 2018
%o (Magma) R:= RealField(); [Floor(Sqrt(2*Pi(R))*n^(n+(1/2))/Exp(n)): n in [0..50]]; // _G. C. Greubel_, Aug 16 2018
%Y Cf. (rounded up) A005395.
%K nonn,easy
%O 0,4
%A _N. J. A. Sloane_
%E a(12) onwards corrected by _Sean A. Irvine_, Jun 11 2016