login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193704
Number of arrays of -2..2 integers x(1..n) with every x(i) in a subsequence of length 1, 2, 3 or 4 with sum zero.
1
1, 5, 23, 119, 489, 1987, 8043, 32599, 132713, 540913, 2205225, 8989861, 36646831, 149381195, 608893037, 2481878351, 10116219555, 41234080525, 168071970545, 685070063741, 2792383408313, 11381911805631, 46393311136175
OFFSET
1,2
COMMENTS
Column 2 of A193710.
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) +4*a(n-2) +a(n-3) -10*a(n-4) +10*a(n-5) +97*a(n-6) +202*a(n-7) +211*a(n-8) +184*a(n-9) +359*a(n-10) +772*a(n-11) +1020*a(n-12) +803*a(n-13) +4*a(n-14) -618*a(n-15) +491*a(n-16) +3674*a(n-17) +6991*a(n-18) +5747*a(n-19) -3079*a(n-20) -14036*a(n-21) -19019*a(n-22) -14576*a(n-23) -5701*a(n-24) +980*a(n-25) -3128*a(n-26) -12159*a(n-27) -19677*a(n-28) -21113*a(n-29) -11499*a(n-30) -3507*a(n-31) +1809*a(n-32) +1619*a(n-33) -5989*a(n-34) -11700*a(n-35) -12527*a(n-36) -9260*a(n-37) -4560*a(n-38) +1240*a(n-39) +7*a(n-40) +712*a(n-41) -65*a(n-42) -1846*a(n-43) -115*a(n-44) -1095*a(n-45) -734*a(n-46) -22*a(n-47) -851*a(n-48) +140*a(n-49) +121*a(n-50) +246*a(n-51) +370*a(n-52) +66*a(n-53) +7*a(n-54) -99*a(n-55) -84*a(n-56) -12*a(n-57).
EXAMPLE
Some solutions for n=6
..2....2....0....0...-1....2...-1...-2....2....2....1....2...-1....0....1...-1
.-1....1....1....2....2...-2....2....0....1....0....1....1...-1....1...-1....2
.-1...-1...-1...-1....1....0...-1....1...-1...-1...-2...-2....0....2....1...-1
..2...-2....2...-1...-2....0....0....1...-2...-1...-1...-1....2...-1...-2...-1
..0....0....0...-1....2...-2...-1....2....2...-1....0....0...-2...-2...-1....0
..0....0...-2....2....0....2....2...-2....0....2....1....0....0....1....2....1
CROSSREFS
Cf. A193710.
Sequence in context: A167248 A321798 A005393 * A294356 A162815 A351756
KEYWORD
nonn
AUTHOR
R. H. Hardin, Aug 02 2011
STATUS
approved