login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005039 Number of nonequivalent dissections of a polygon into n pentagons by nonintersecting diagonals rooted at a cell up to rotation and reflection.
(Formerly M3589)
3
1, 1, 4, 22, 147, 1074, 8216, 64798, 521900, 4272967, 35447724, 297308810, 2516830890, 21476307960, 184530904560, 1595190209002, 13863857007924, 121067796450692, 1061770618201680, 9347742325179544, 82584606893075739 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 1..1000

F. Harary, E. M. Palmer, R. C. Read, On the cell-growth problem for arbitrary polygons, computer printout, circa 1974

F. Harary, E. M. Palmer and R. C. Read, On the cell-growth problem for arbitrary polygons, Discr. Math. 11 (1975), 371-389.

FORMULA

G.f.: (1/10)*x*(u^5(x) + 4*u(x^5) + 5*u^2(x^2) + 5*x*u^4(x^2)) where u(x) is the g.f. for A002293. - Sean A. Irvine, Mar 12 2016

a(n) ~ 2^(8*n - 1/2) / (sqrt(Pi) * n^(3/2) * 3^(3*n + 5/2)). - Vaclav Kotesovec, Mar 13 2016

MATHEMATICA

Rest[CoefficientList[Series[x*(HypergeometricPFQ[{1/4, 1/2, 3/4}, {2/3, 4/3}, (256/27)*x]^5 + 4*HypergeometricPFQ[{1/4, 1/2, 3/4}, {2/3, 4/3}, (256/27)*x^5] + 5*HypergeometricPFQ[{1/4, 1/2, 3/4}, {2/3, 4/3}, (256/27)*x^2]^2 + 5*x*HypergeometricPFQ[{1/4, 1/2, 3/4}, {2/3, 4/3}, (256/27)*x^2]^4)/10, {x, 0, 25}], x]] (* Vaclav Kotesovec, Mar 13 2016 *)

CROSSREFS

Column k=5 of A295259.

Cf. A002293, A005037 (no mirror-image symmetries), A003446 (triangles), A005035 (quadrilaterals).

Sequence in context: A196795 A278396 A121394 * A199418 A112898 A253095

Adjacent sequences:  A005036 A005037 A005038 * A005040 A005041 A005042

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Sean A. Irvine, Mar 12 2016

Name edited by Andrew Howroyd, Nov 20 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 24 01:22 EDT 2018. Contains 311819 sequences. (Running on oeis4.)