This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005041 A self-generating sequence. (Formerly M0258) 3
 1, 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS See A008620 for run lengths: each k occurs A008620(k+2) times. [Reinhard Zumkeller, Mar 16 2012] REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..10000 James Propp, Problem 1047, Math. Mag., 52 (1979), 265. J. Shallit, Letter to N. J. A. Sloane, Nov 10 1979.  Attached: James Propp, Problem 1047, Math. Mag., 52 (1979), 265. [Annotated scanned copy] Aaron Snook, Augmented Integer Linear Recurrences, Thesis, 2012. - From N. J. A. Sloane, Dec 19 2012 FORMULA For any k in {0, 1, 2, ...} and r in {0, 1, 2), we have: if n=6*k+(3/2)*(k)*(k-1)+r*(k+2), then a(n)=3*k+r+1. E.g. for k=3 and r=1, we have n=6*3+(3/2)*(3)*(3-1)+1*(3+2)=32 and so a(32)=3*3+1+1=11. - Francois Jooste (phukraut(AT)hotmail.com), Mar 12 2002 MATHEMATICA Table[n+1, {n, 0, 20}, {Ceiling[(n+1)/3]+1}] // Flatten (* Jean-François Alcover, Dec 10 2014 *) PROG (Haskell) a005041 n = a005041_list !! n a005041_list = 1 : f 1 1 (tail ts) where    f y i gs'@((j, a):gs) | i < j  = y : f y (i+1) gs'                         | i == j = a : f a (i+1) gs    ts = [(6*k + 3*k*(k-1) `div` 2 + r*(k+2), 3*k+r+1) |          k <- [0..], r <- [0, 1, 2]] -- Reinhard Zumkeller, Mar 16 2012 CROSSREFS Cf. A005038, A005039, A005040, A005043, A005044, A055086, A001462, A082462, A024417, A084500. Sequence in context: A001462 A082462 A276581 * A030530 A084500 A084557 Adjacent sequences:  A005038 A005039 A005040 * A005042 A005043 A005044 KEYWORD nonn,nice,easy AUTHOR EXTENSIONS More terms from Samuel Hilliard (sam_spade1977(AT)hotmail.com), Apr 11 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 22:20 EDT 2018. Contains 315247 sequences. (Running on oeis4.)