login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004776
Numbers not congruent to 5 (mod 8).
3
0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78
OFFSET
1,3
COMMENTS
Also, numbers whose binary expansion does not end in 101.
Numbers that are congruent to {0, 1, 2, 3, 4, 6, 7} mod 8. - Wesley Ivan Hurt, Jul 22 2016
FORMULA
Numbers that are congruent to {0, 1, 2, 3, 4, 6, 7} mod 8.
G.f.: x^2*(1+x+x^2+x^3+2*x^4+x^5+x^6) / ((x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2). - R. J. Mathar, Oct 25 2011
a(n) = n + floor((n-6)/7). - M. F. Hasler, Nov 02 2013
From Wesley Ivan Hurt, Jul 22 2016: (Start)
a(n) = a(n-1) + a(n-7) - a(n-8) for n>8; a(n) = a(n-7) + 8 for n>7.
a(n) = (56*n - 63 + (n mod 7) - 6*((n+1) mod 7) + ((n+2) mod 7) + ((n+3) mod 7) + ((n+4) mod 7) + ((n+5) mod 7) + ((n+6) mod 7))/49.
a(7k) = 8k-1, a(7k-1) = 8k-2, a(7k-2) = 8k-4, a(7k-3) = 8k-5, a(7k-4) = 8k-6, a(7k-5) = 8k-7, a(7k-6) = 8k-8. (End)
MAPLE
A004776:=n->8*floor(n/7)+[0, 1, 2, 3, 4, 6, 7][(n mod 7)+1]: seq(A004776(n), n=0..100); # Wesley Ivan Hurt, Jul 22 2016
MATHEMATICA
DeleteCases[Range[0, 80], _?(Mod[#, 8]==5&)] (* Harvey P. Dale, Apr 28 2014 *)
PROG
(Haskell)
a004776 n = a004776_list !! (n-1)
a004776_list = filter ((/= 5) . (`mod` 8)) [0..]
-- Reinhard Zumkeller, Aug 17 2012
(PARI) is(n)=n%8!=5 \\ Charles R Greathouse IV, Mar 07 2013
(PARI) A004776(n)=n+(n-6)\7 \\ M. F. Hasler, Nov 02 2013
(Magma) [n : n in [0..100] | n mod 8 in [0, 1, 2, 3, 4, 6, 7]]; // Wesley Ivan Hurt, Jul 22 2016
CROSSREFS
Cf. A004770 (complement), A045323 (primes).
Sequence in context: A101771 A035058 A350757 * A187945 A137409 A037041
KEYWORD
nonn,easy
EXTENSIONS
Edited by M. F. Hasler, Nov 02 2013
STATUS
approved