login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers not congruent to 5 (mod 8).
3

%I #39 Sep 08 2022 08:44:33

%S 0,1,2,3,4,6,7,8,9,10,11,12,14,15,16,17,18,19,20,22,23,24,25,26,27,28,

%T 30,31,32,33,34,35,36,38,39,40,41,42,43,44,46,47,48,49,50,51,52,54,55,

%U 56,57,58,59,60,62,63,64,65,66,67,68,70,71,72,73,74,75,76,78

%N Numbers not congruent to 5 (mod 8).

%C Also, numbers whose binary expansion does not end in 101.

%C Numbers that are congruent to {0, 1, 2, 3, 4, 6, 7} mod 8. - _Wesley Ivan Hurt_, Jul 22 2016

%H Daniel Starodubtsev, <a href="/A004776/b004776.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,1,-1).

%F Numbers that are congruent to {0, 1, 2, 3, 4, 6, 7} mod 8.

%F G.f.: x^2*(1+x+x^2+x^3+2*x^4+x^5+x^6) / ((x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2). - _R. J. Mathar_, Oct 25 2011

%F a(n) = n + floor((n-6)/7). - _M. F. Hasler_, Nov 02 2013

%F From _Wesley Ivan Hurt_, Jul 22 2016: (Start)

%F a(n) = a(n-1) + a(n-7) - a(n-8) for n>8; a(n) = a(n-7) + 8 for n>7.

%F a(n) = (56*n - 63 + (n mod 7) - 6*((n+1) mod 7) + ((n+2) mod 7) + ((n+3) mod 7) + ((n+4) mod 7) + ((n+5) mod 7) + ((n+6) mod 7))/49.

%F a(7k) = 8k-1, a(7k-1) = 8k-2, a(7k-2) = 8k-4, a(7k-3) = 8k-5, a(7k-4) = 8k-6, a(7k-5) = 8k-7, a(7k-6) = 8k-8. (End)

%p A004776:=n->8*floor(n/7)+[0, 1, 2, 3, 4, 6, 7][(n mod 7)+1]: seq(A004776(n), n=0..100); # _Wesley Ivan Hurt_, Jul 22 2016

%t DeleteCases[Range[0,80],_?(Mod[#,8]==5&)] (* _Harvey P. Dale_, Apr 28 2014 *)

%o (Haskell)

%o a004776 n = a004776_list !! (n-1)

%o a004776_list = filter ((/= 5) . (`mod` 8)) [0..]

%o -- _Reinhard Zumkeller_, Aug 17 2012

%o (PARI) is(n)=n%8!=5 \\ _Charles R Greathouse IV_, Mar 07 2013

%o (PARI) A004776(n)=n+(n-6)\7 \\ _M. F. Hasler_, Nov 02 2013

%o (Magma) [n : n in [0..100] | n mod 8 in [0, 1, 2, 3, 4, 6, 7]]; // _Wesley Ivan Hurt_, Jul 22 2016

%Y Cf. A004770 (complement), A045323 (primes).

%K nonn,easy

%O 1,3

%A _N. J. A. Sloane_

%E Edited by _M. F. Hasler_, Nov 02 2013