login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001903
Final digit of 7^n.
5
1, 7, 9, 3, 1, 7, 9, 3, 1, 7, 9, 3, 1, 7, 9, 3, 1, 7, 9, 3, 1, 7, 9, 3, 1, 7, 9, 3, 1, 7, 9, 3, 1, 7, 9, 3, 1, 7, 9, 3, 1, 7, 9, 3, 1, 7, 9, 3, 1, 7, 9, 3, 1, 7, 9, 3, 1, 7, 9, 3, 1, 7, 9, 3, 1, 7, 9, 3, 1, 7, 9, 3, 1, 7, 9, 3, 1, 7, 9, 3, 1
OFFSET
0,2
COMMENTS
Period 4: repeat [1, 7, 9, 3]. - Joerg Arndt, Aug 12 2014
LINKS
Edward Omey and Stefan Van Gulck, What are the last digits of ...?, International Journal of Mathematical Education in Science and Technology, (2015) 46:1, 147-155.
FORMULA
a(n) = 7^n mod 10. - Zerinvary Lajos, Nov 03 2009
From R. J. Mathar, Apr 20 2010: (Start)
a(n) = a(n-1) - a(n-2) + a(n-3) for n > 2.
G.f.: ( 1+6*x+3*x^2 ) / ( (1-x)*(1+x^2) ). (End)
a(n) = 10 - a(n-2) for n > 1. - Vincenzo Librandi, Feb 08 2011
From Bruno Berselli, Feb 08 2011: (Start)
a(n) = 5 - (2-i)*(-i)^n - (2+i)*i^n, where i=sqrt(-1).
a(n) = A001148(A159966(n)). (End)
a(n) = A010879(A000420(n)). - Michel Marcus, Jul 06 2016
E.g.f.: 2*sin(x) - 4*cos(x) + 5*exp(x). - Ilya Gutkovskiy, Jul 06 2016
MAPLE
A001903:=n->7^n mod 10: seq(A001903(n), n=0..100); # Wesley Ivan Hurt, Aug 12 2014
MATHEMATICA
Table[PowerMod[7, n, 10], {n, 0, 200}] (* Vladimir Joseph Stephan Orlovsky, Jun 10 2011 *)
PROG
(Sage) [power_mod(7, n, 10)for n in range(0, 81)] # Zerinvary Lajos, Nov 03 2009
(Magma)[7^n mod 10: n in [0..57]]; // Vincenzo Librandi, Feb 08 2011
(PARI) a(n)=lift(Mod(7, 10)^n) \\ Charles R Greathouse IV, Dec 28 2012
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved