login
A001636
A Fielder sequence: a(n) = a(n-1) + a(n-2) - a(n-7), n >= 8.
(Formerly M0763 N0290)
5
0, 2, 3, 6, 10, 17, 21, 38, 57, 92, 143, 225, 351, 555, 868, 1366, 2142, 3365, 5282, 8296, 13023, 20451, 32108, 50417, 79160, 124295, 195159, 306431, 481139, 755462, 1186184, 1862486, 2924375, 4591702, 7209646, 11320209, 17774393, 27908418, 43820325
OFFSET
1,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Daniel C. Fielder, Special integer sequences controlled by three parameters, Fibonacci Quarterly 6, 1968, 64-70.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
G.f.: x^2*(2+x+x^2+x^3+x^4-6*x^5)/(1-x-x^2+x^7).
a(n) = a(n-2) + a(n-3) + a(n-4) + a(n-5) + a(n-6), n >= 7.
MAPLE
A001636:=-z*(2+3*z+4*z**2+5*z**3+6*z**4)/(z+1)/(z**5+z**3+z-1); # Simon Plouffe in his 1992 dissertation
a:= n -> (Matrix([[6, -1$4, 4, 5]]). Matrix(7, (i, j)-> if (i=j-1) then 1 elif j=1 then [1$2, 0$4, -1][i] else 0 fi)^n)[1, 1]: seq(a(n), n=1..38); # Alois P. Heinz, Aug 01 2008
MATHEMATICA
LinearRecurrence[{1, 1, 0, 0, 0, 0, -1}, {0, 2, 3, 6, 10, 17, 21}, 50] (* T. D. Noe, Aug 09 2012 *)
PROG
(PARI) a(n)=if(n<0, 0, polcoeff(x^2*(2+x+x^2+x^3+x^4-6*x^5)/(1-x-x^2+x^7)+x*O(x^n), n))
(Magma) I:=[0, 2, 3, 6, 10, 17, 21]; [n le 7 select I[n] else Self(n-1) + Self(n-2) - Self(n-7): n in [1..30]]; // G. C. Greubel, Jan 09 2018
CROSSREFS
Cf. A013983.
Sequence in context: A066895 A105075 A140669 * A347786 A036588 A334893
KEYWORD
nonn
EXTENSIONS
Edited by Michael Somos, Feb 17 2002
STATUS
approved