login
A001639
A Fielder sequence. a(n) = a(n-1) + a(n-3) + a(n-4) + a(n-5), n >= 6.
(Formerly M3353 N1349)
1
1, 1, 4, 9, 16, 22, 36, 65, 112, 186, 309, 522, 885, 1492, 2509, 4225, 7124, 12010, 20236, 34094, 57453, 96823, 163163, 274946, 463316, 780755, 1315687, 2217112, 3736129, 6295887, 10609441, 17878369, 30127497, 50768954, 85552651, 144167958, 242942778
OFFSET
1,3
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Daniel C. Fielder, Special integer sequences controlled by three parameters, Fibonacci Quarterly 6, 1968, 64-70.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
G.f.: x*(1+3*x^2+4*x^3+5*x^4)/(1-x-x^3-x^4-x^5).
MAPLE
A001639:=-(1+3*z**2+4*z**3+5*z**4)/(-1+z+z**3+z**4+z**5); # conjectured by Simon Plouffe in his 1992 dissertation
MATHEMATICA
Drop[CoefficientList[Series[x*(1+3*x^2+4*x^3+5*x^4)/(1-x-x^3-x^4-x^5), {x, 0, 40}], x], 1] (* Stefan Steinerberger, Apr 10 2006 *)
LinearRecurrence[{1, 0, 1, 1, 1}, {1, 1, 4, 9, 16}, 30] (* G. C. Greubel, Jan 09 2018 *)
PROG
(PARI) a(n)=if(n<0, 0, polcoeff(x*(1+3*x^2+4*x^3+5*x^4)/(1-x-x^3-x^4-x^5)+x*O(x^n), n))
(Magma) I:=[1, 1, 4, 9, 16]; [n le 5 select I[n] else Self(n-1) + Self(n-3) + Self(n-4) + Self(n-5): n in [1..30]]; // G. C. Greubel, Jan 09 2018
CROSSREFS
Cf. A000570.
Sequence in context: A313350 A152399 A022822 * A309138 A162207 A092614
KEYWORD
nonn
EXTENSIONS
Edited by Michael Somos, Feb 17 2002
STATUS
approved