The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001641 A Fielder sequence: a(n) = a(n-1) + a(n-2) + a(n-4). (Formerly M2364 N0935) 2
 1, 3, 4, 11, 16, 30, 50, 91, 157, 278, 485, 854, 1496, 2628, 4609, 8091, 14196, 24915, 43720, 76726, 134642, 236283, 414645, 727654, 1276941, 2240878, 3932464, 6900996, 12110401, 21252275, 37295140, 65448411, 114853952, 201554638, 353703730, 620706779 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 1..1000 Daniel C. Fielder, Special integer sequences controlled by three parameters, Fibonacci Quarterly 6, 1968, 64-70. Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992. Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992 Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1. Index entries for linear recurrences with constant coefficients, signature (1, 1, 0, 1). FORMULA G.f.: x*(1+2*x+4*x^3)/(1-x-x^2-x^4). a(n) = n*Sum_{k=1..n} Sum_{j=floor((4*k-n)/3)..floor((4*k-n)/2)} binomial(j,n-4*k+3*j)*binomial(k,j))/k. - Vladimir Kruchinin, May 25 2011 MAPLE A001641:=-(1+2*z+4*z**3)/(z+1)/(z**3-z**2+2*z-1); # conjectured by Simon Plouffe in his 1992 dissertation MATHEMATICA LinearRecurrence[{1, 1, 0, 1}, {1, 3, 4, 11}, 50] (* T. D. Noe, Aug 09 2012 *) PROG (PARI) a(n)=if(n<0, 0, polcoeff(x*(1+2*x+4*x^3)/(1-x-x^2-x^4)+x*O(x^n), n)) (Maxima) a(n):=(sum(sum(binomial(j, n-4*k+3*j)*binomial(k, j), j, floor((4*k-n)/3), floor((4*k-n)/2))/k, k, 1, n))*n; /* Vladimir Kruchinin, May 25 2011 */ (MAGMA) I:=[1, 3, 4, 11]; [n le 4 select I[n] else Self(n-1) + Self(n-2) + Self(n-4): n in [1..30]]; // G. C. Greubel, Jan 09 2018 CROSSREFS Cf. A060945. Sequence in context: A290493 A266384 A248825 * A007382 A127804 A027306 Adjacent sequences:  A001638 A001639 A001640 * A001642 A001643 A001644 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 13 01:36 EDT 2021. Contains 342934 sequences. (Running on oeis4.)