login
A001635
A Fielder sequence: a(n) = a(n-1) + a(n-2) - a(n-6), n >= 7.
(Formerly M0762 N0289)
1
0, 2, 3, 6, 10, 11, 21, 30, 48, 72, 110, 171, 260, 401, 613, 942, 1445, 2216, 3401, 5216, 8004, 12278, 18837, 28899, 44335, 68018, 104349, 160089, 245601, 376791, 578057, 886830, 1360538, 2087279, 3202216, 4912704, 7536863, 11562737, 17739062, 27214520
OFFSET
1,2
COMMENTS
This is an application of the general formula that Paul Barry gives for sequence A000129 to the subsequence of odd-indexed terms. - Pat Costello (pat.costello(AT)eku.edu), May 20 2003
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Daniel C. Fielder, Special integer sequences controlled by three parameters, Fibonacci Quarterly 6, 1968, 64-70.
Daniel C. Fielder, Errata:Special integer sequences controlled by three parameters, Fibonacci Quarterly 6, 1968, 64-70.
D. C. Fielder and C. O. Alford, Simulation concepts for studying incomplete (but potentially recursive) sequences, IASTED International Symposium Simulation and Modeling '89, Lugano, Switzerland, June 19-22, 1989. (Annotated scanned copy)
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
G.f.: x^2*(2 + x + x^2 + x^3 - 5*x^4)/(1 - x - x^2 + x^6).
a(n) = a(n-2) + a(n-3) + a(n-4) + a(n-5), n >= 6.
a(n) = Sum_{k=0..n} C(2*n+1, 2*k+1) * 2^k. - Pat Costello (pat.costello(AT)eku.edu), May 20 2003
MAPLE
A001635:=-z*(2+3*z+4*z**2+5*z**3)/(-1+z**2+z**3+z**4+z**5); # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
a := n -> (Matrix([[5, -1$3, 3, 4]]). Matrix(6, (i, j)-> if (i=j-1) then 1 elif j=1 then [1$2, 0$3, -1][i] else 0 fi)^n)[1, 1] ; seq (a(n), n=1..39); # Alois P. Heinz, Aug 01 2008
MATHEMATICA
LinearRecurrence[{1, 1, 0, 0, 0, -1}, {0, 2, 3, 6, 10, 11}, 50] (* T. D. Noe, Aug 09 2012 *)
PROG
(PARI) a(n)=if(n<0, 0, polcoeff(x^2*(2+x+x^2+x^3-5*x^4)/(1-x-x^2+x^6)+x*O(x^n), n))
(Magma) I:=[0, 2, 3, 6, 10, 11]; [n le 6 select I[n] else Self(n-1) + Self(n-2) - Self(n-6): n in [1..30]]; // G. C. Greubel, Jan 09 2018
CROSSREFS
Cf. A000129.
Sequence in context: A112925 A193246 A239012 * A106172 A189478 A364164
KEYWORD
nonn
EXTENSIONS
Edited by Michael Somos, Feb 17 2002
STATUS
approved