

A001532


Number of NPequivalence classes of selfdual threshold functions of n or fewer variables ; number of majority (i.e., decisive and weighted) games with n players.
(Formerly M0852 N0324)


5




OFFSET

1,3


REFERENCES

H. M. Gurk and J. R. Isbell. 1959. Simple Solutions. In A. W. Tucker and R. D. Luce (eds.) Contributions to the Theory of Games, Volume 4. Princeton, NJ: Princeton University Press, pp. 247265. (Case n=6.)
D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.1, p. 79.
S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38, Table 2.3.2.  Row 23. (Cases until n=9.)
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
J. von Neumann and O. Morgenstern, Theory of games and economic behavior, Princeton University Press, New Jersey, 1944. (Cases n=1 to 5.)


LINKS



FORMULA

a(n) = Sum_{k=1..n} A003184(k).  Alastair D. King, Oct 26, 2023


CROSSREFS



KEYWORD

nonn,nice,more


AUTHOR



EXTENSIONS

a(10) added by W. Lan (wl(AT)fjrtvu.edu.cn), Jun 27 2010
Better description from Alastair King, Mar 17, 2023.


STATUS

approved



