login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323230
a(n) = binomial(2*(n - 1), n - 1) + 1.
7
1, 2, 3, 7, 21, 71, 253, 925, 3433, 12871, 48621, 184757, 705433, 2704157, 10400601, 40116601, 155117521, 601080391, 2333606221, 9075135301, 35345263801, 137846528821, 538257874441, 2104098963721, 8233430727601, 32247603683101, 126410606437753, 495918532948105
OFFSET
0,2
LINKS
FORMULA
Let G(x) = -1/(x - 1) - I*x/sqrt(4*x - 1) with Im(x) < 0, then a(n) = [x^n] G(x).
The generating function G(x) satisfies the differential equation 6*x^2 - 4*x + 1 = (4*x^4 - 9*x^3 + 6*x^2 - x)*diff(G(x), x) - (2*x^3 - 5*x^2 + 4*x - 1)*G(x).
a(n) = ((4*n - 6)*a(n - 1) - 3*n + 5)/(n - 1) for n >= 2. - Peter Luschny, Aug 02 2019
From G. C. Greubel, Dec 09 2021: (Start)
a(n) = 1 + n*A000108(n-1).
E.g.f.: exp(x) + x*exp(2*x)*(BesselI[0, 2*x] - BesselI[1, 2*x]). (End)
MAPLE
aList := proc(len) local gf, ser; assume(Im(x)<0);
gf := -1/(x-1) - I*x/sqrt(4*x-1); ser := series(gf, x, len+2):
seq(coeff(ser, x, n), n=0..len) end: aList(27);
# Alternative:
a := proc(n) option remember;
if n < 2 then [1, 2][n+1] else ((4*n - 6)*a(n - 1) - 3*n + 5)/(n - 1) fi end:
seq(a(n), n=0..27); # Peter Luschny, Aug 02 2019
MATHEMATICA
Table[Binomial[2(n - 1), n - 1] + 1, {n, 0, 27}]
PROG
(Magma) [1] cat [1 + n*Catalan(n-1): n in [1..30]]; // G. C. Greubel, Dec 09 2021
(Sage) [1 + binomial(2*n-2, n-1) for n in (0..30)] # G. C. Greubel, Dec 09 2021
(PARI) a(n)=binomial(2*n-2, n-1)+1 \\ Charles R Greathouse IV, Oct 23 2023
CROSSREFS
Compare to A244174 which is "missing" the second term 2.
Cf. A000108.
Sequence in context: A047693 A212265 A107108 * A262305 A189360 A001532
KEYWORD
nonn,easy
AUTHOR
Peter Luschny, Feb 12 2019
STATUS
approved