login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001535
a(n) = (10n+1)*(10n+9).
1
9, 209, 609, 1209, 2009, 3009, 4209, 5609, 7209, 9009, 11009, 13209, 15609, 18209, 21009, 24009, 27209, 30609, 34209, 38009, 42009, 46209, 50609, 55209, 60009, 65009, 70209, 75609, 81209, 87009, 93009, 99209, 105609, 112209, 119009, 126009, 133209, 140609
OFFSET
0,1
FORMULA
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=9, a(1)=209, a(2)=609. - Harvey P. Dale, Oct 15 2014
G.f.: (9 + 182*x + 9*x^2)/(1 - x)^3. - Vincenzo Librandi, Dec 17 2014
E.g.f.: (100*x^2 + 200*x + 9)*exp(x). - Robert Israel, Dec 17 2014
From Amiram Eldar, Feb 20 2023: (Start)
a(n) = A017281(n)*A017377(n).
Sum_{n>=0} 1/a(n) = sqrt(5+2*sqrt(5))*Pi/80.
Sum_{n>=0} (-1)^n/a(n) = (sqrt(10+2*sqrt(5)) * log(cot(Pi/20)) + sqrt(10-2*sqrt(5)) * log(cot(3*Pi/20)))/80.
Product_{n>=0} (1 - 1/a(n)) = 2*phi*cos(sqrt(17)*Pi/10), where phi is the golden ratio (A001622).
Product_{n>=0} (1 + 1/a(n)) = 2*phi*cos(sqrt(15)*Pi/10). (End)
MAPLE
seq((10*n+1)*(10*n+9), n = 0 .. 100); # Robert Israel, Dec 17 2014
MATHEMATICA
Times@@@Table[10n+{1, 9}, {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {9, 209, 609}, 40] (* Harvey P. Dale, Oct 15 2014 *)
CoefficientList[Series[(9 + 182 x + 9 x^2) / (1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Dec 17 2014 *)
PROG
(PARI) a(n)=(10*n+1)*(10*n+9) \\ Charles R Greathouse IV, Jun 16 2017
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved