login
A003184
Number of NP-equivalence classes of self-dual threshold functions of exactly n variables.
(Formerly M3492)
1
1, 0, 1, 1, 4, 14, 114, 2335, 172958, 52805196
OFFSET
1,5
REFERENCES
H. M. Gurk and J. R. Isbell. 1959. Simple Solutions. In A. W. Tucker and R. D. Luce (eds.) Contributions to the Theory of Games, Volume 4. Princeton, NJ: Princeton University Press, pp. 247-265. Case n=6.
S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38, Table 2.3.2. - Row 24. (Cases n>7.)
J. von Neumann and O. Morgenstern, Theory of games and economic behavior, Princeton University Press, New Jersey, 1944. Cases n=1 to 5.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. R. Isbell, On the enumeration of majority games, MTAC, v. 13, 1959, pp. 21-28. (Case n=7.)
S. Muroga, Threshold Logic and Its Applications, Wiley, NY, 1971 [Annotated scans of a few pages]
S. Muroga, T. Tsuboi and C. R. Baugh, Enumeration of threshold functions of eight variables, IEEE Trans. Computers, 19 (1970), 818-825. [Annotated scanned copy]
FORMULA
a(n) = A001532(n) - A001532(n-1), for n > 1. - Evgeny Luttsev, Sep 09 2014
CROSSREFS
KEYWORD
nonn,more
EXTENSIONS
a(9) from Evgeny Luttsev, Sep 09 2014
Better description and new offset from Alastair King, Mar 17, 2023
STATUS
approved