login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003184 Number of NP-equivalence classes of self-dual threshold functions of exactly n variables.
(Formerly M3492)
1
1, 0, 1, 1, 4, 14, 114, 2335, 172958, 52805196 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,5
REFERENCES
H. M. Gurk and J. R. Isbell. 1959. Simple Solutions. In A. W. Tucker and R. D. Luce (eds.) Contributions to the Theory of Games, Volume 4. Princeton, NJ: Princeton University Press, pp. 247-265. Case n=6.
S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38, Table 2.3.2. - Row 24. (Cases n>7.)
J. von Neumann and O. Morgenstern, Theory of games and economic behavior, Princeton University Press, New Jersey, 1944. Cases n=1 to 5.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. R. Isbell, On the enumeration of majority games, MTAC, v. 13, 1959, pp. 21-28. (Case n=7.)
S. Muroga, Threshold Logic and Its Applications, Wiley, NY, 1971 [Annotated scans of a few pages]
S. Muroga, T. Tsuboi and C. R. Baugh, Enumeration of threshold functions of eight variables, IEEE Trans. Computers, 19 (1970), 818-825. [Annotated scanned copy]
FORMULA
a(n) = A001532(n) - A001532(n-1), for n > 1. - Evgeny Luttsev, Sep 09 2014
CROSSREFS
Sequence in context: A048369 A269590 A113559 * A065062 A240273 A137048
KEYWORD
nonn,more
AUTHOR
EXTENSIONS
a(9) from Evgeny Luttsev, Sep 09 2014
Better description and new offset from Alastair King, Mar 17, 2023
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 20 15:46 EDT 2024. Contains 374459 sequences. (Running on oeis4.)