OFFSET
2,2
COMMENTS
a(n) is the number of solutions to the inequality x_1^(2/3) + x_2^(2/3) <= n where 1 <= x_1 <= x_2 are any two integers. If the number of terms in the sum is not restricted to 2, we get A000234. - R. J. Mathar, Jul 03 2009
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seth A. Troisi, Table of n, a(n) for n = 2..1000
B. K. Agarwala and F. C. Auluck, Statistical mechanics and partitions into non-integral powers of integers, Proc. Camb. Phil. Soc., 47 (1951), 207-216.
B. K. Agarwala and F. C. Auluck, Statistical mechanics and partitions into non-integral powers of integers, Proc. Camb. Phil. Soc., 47 (1951), 207-216. [Annotated scanned copy]
MATHEMATICA
A000148[n_] := Sum[Min[xi, Floor[(n - xi^(2/3))^(3/2)]], {xi, 1, Floor[n^(3/2)]}];
Table[A000148[n], {n, 2, 100}] (* Seth A. Troisi, May 25 2022 *)
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
EXTENSIONS
More terms from Sean A. Irvine, Oct 08 2009
STATUS
approved