login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005186
a(n) is the number of integers m which take n steps to reach 1 in '3x+1' problem.
(Formerly M0305)
22
1, 1, 1, 1, 1, 2, 2, 4, 4, 6, 6, 8, 10, 14, 18, 24, 29, 36, 44, 58, 72, 91, 113, 143, 179, 227, 287, 366, 460, 578, 732, 926, 1174, 1489, 1879, 2365, 2988, 3780, 4788, 6049, 7628, 9635, 12190, 15409, 19452, 24561, 31025, 39229, 49580, 62680, 79255, 100144
OFFSET
0,6
COMMENTS
Appears to settle into approximately exponential growth after about 25 terms or so with a ratio between adjacent terms of roughly 1.264. - Howard A. Landman, May 24 2003
David W. Wilson (Jun 10 2003) gives a heuristic argument that the constant should be the largest eigenvalue of the matrix [ 1 0 0 1 0 0 / 0 0 0 0 1/3 0 / 0 1 0 0 1 0 / 0 0 0 0 1/3 0 / 0 0 1 0 0 1 / 0 0 0 0 1/3 0 ], which is (3 + sqrt(21))/6 = 1.2637626... = A176014.
Merlini and Sala (1999) deduce the value (1 + sqrt(7/3))/2 (A176014) for the asymptotic ratio a(n+1)/a(n) for n -> oo and call this "Collatz's constant". This is the same value as the constant mentioned above, see the "Heuristic argument for the asymptotic value (3 + sqrt(21))/6 of the ratio a(n+1)/a(n)" note in the Links section. - Markus Sigg, Nov 27 2020
REFERENCES
R. K. Guy, personal communication.
J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010; see p. 33.
Danilo Merlini and Nicoletta Sala, On the Fibonacci's Attractor and the Long Orbits in the 3n+1 Problem, International Journal of Chaos Theory and Applications, Vol. 4, No. 2-3 (1999), 75-84.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Markus Sigg, Table of n, a(n) for n = 0..125 (first 71 terms from T. D. Noe, terms up to n = 120 from Bert Dobbelaere).
S. N. Anderson, Struggling with the 3x+1 problem, Math. Gazette, 71 (1987), 271-274.
S. N. Anderson, Struggling with the 3x+1 problem, Math. Gazette, 71 (1987), 271-274. [Annotated scanned copy]
R. K. Guy, S. N. Anderson, and N. J. A. Sloane, Correspondence, 1988.
Jeffrey C. Lagarias, The 3x+1 Problem: An Overview, arXiv:2111.02635 [math.NT], 2021.
Wolfdieter Lang, On Collatz Words, Sequences, and Trees, Journal of Integer Sequences, Vol 17 (2014), Article 14.11.7.
Hugo Pfoertner, Ratio of successive terms, illustration of deviation from (3+sqrt(21))/6.
MATHEMATICA
(* This program is not suitable to compute more than 20 terms *) maxiSteps = 20; mMaxi = 2*10^6; Clear[a]; a[_] = 0; steps[m_] := steps[m] = Module[{n = m, ns = 0}, While[n != 1, If[Mod[n, 2] == 0, n = n/2, n = 3*n+1]; ns++]; ns]; Do[sn = steps[m]; If[sn <= maxiSteps, a[sn] = a[sn]+1; Print["m = ", m, " a(", sn, ") = ", a[sn]]], {m, 1, mMaxi}]; Table[a[n], {n, 0, maxiSteps}] (* Jean-François Alcover, Oct 18 2013 *)
(* 60 terms in under a minute *) s = {1}; t = Join[{1}, Table[s = Union[2*s, (Select[s, Mod[#, 3] == 1 && OddQ[(# - 1)/3] && (# - 1)/3 > 1 &] - 1)/3]; Length[s], {n, 60}]] (* T. D. Noe, Oct 18 2013 *)
PROG
(Perl) #!/usr/bin/perl @old = ( 1 ); while (1) { print scalar(@old), " "; @new = ( ); foreach $n (@old) { $used{$n} = 1; if (($n % 6) == 4) { $m = ($n-1)/3; push(@new, $m) unless ($used{$m}); } $m = $n + $n; push(@new, $m) unless ($used{$m}); } @old = @new; }
(PARI) first(n)=my(v=vector(n+1), u=[1], old=u, w); v[1]=1; for(i=1, n, w=List(); for(j=1, #u, listput(w, 2*u[j]); if(u[j]%6==4, listput(w, u[j]\3))); old=setunion(old, u); u=setminus(Set(w), old); v[i+1]=#u); v \\ Charles R Greathouse IV, Jun 26 2017
(PARI) first(n)={my(v=Vec([1, 1, 1, 1, 1], n+1), u=[16]); for(i=5, n, u=concat(2*u, [x\3 | x<-u, x%6==4 ]); v[i+1]=#u); v} \\ Joe Slater, Sep 01 2024
(Python)
def search(x, d, lst):
while d>0:
lst[d]+=1
if x%6==4 and x>4:
search(x//3, d-1, lst)
x*=2
d-=1
lst[d]+=1
def A005186_list(n_max):
lst=[0]*(n_max+1)
search(1, n_max, lst)
return lst[::-1]
# Bert Dobbelaere, Sep 09 2018
CROSSREFS
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Apr 27 2001
STATUS
approved