The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A088975 Breadth-first traversal of the Collatz tree, with the odd child of each node traversed prior to its even child. If the Collatz 3n+1 conjecture is true, this is a permutation of all positive integers. 9
 1, 2, 4, 8, 16, 5, 32, 10, 64, 3, 20, 21, 128, 6, 40, 42, 256, 12, 13, 80, 84, 85, 512, 24, 26, 160, 168, 170, 1024, 48, 52, 53, 320, 336, 340, 341, 2048, 96, 17, 104, 106, 640, 672, 113, 680, 682, 4096, 192, 34, 208, 35, 212, 213, 1280, 1344, 226, 1360, 227, 1364 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS From Wolfdieter Lang, Nov 26 2013 (Start) The length of row (level) l of this table is A005186(l). The (incomplete) ternary sub-tree starting with the vertex labeled 8 at level l= 3 obeys the rules: (i) the three possible edge (branch) labels are L, V, R (for left, vertical and right). (ii) if the vertex label m is congruent 4 modulo 6 then the out-degree is 2 and the edge labeled L ends in a vertex with label (m-1)/3  and the edge labeled R ends in a vertex with label 2*m. Otherwise (if the vertex label m is congruent 0, 1, 2, 3, 5 (mod 6)) the out-degree is 1 with the edge labeled V ending in a vertex with label 2*m. See the Python program. On top of this tree starting with node label 8 one puts the unary tree (out-degree 1) with vertex labels 1, 2, and 4, where each edge label is V. The 1, at level l=0, labels the root of the Collatz tree CT. Note that 4 at level l=2 has out-degree 1 and not 2 even though 4 == 4 (mod 6). This exception is needed because otherwise the L branch would result in a repetition of the whole CT tree. Alternatively one could start a Collatz tree with vertex label 4 at level 0, using the above given rules, but cut off the L branch originating from 4 after level 2 (out-degree of vertex labeled 2 is 0). Without this cut 4 would appear again and the whole tree would be repeated. The number of vertex labels with CT(l,k) == 4 (mod 6) with l >=3 is A176866(l+1). From level l=16 on the left-right symmetry in the branch structure (forgetting about the vertex labels) of the sub-tree starting with label 16 at level l=4 is no longer present because the row length A005186(16) = 29 which is odd. (End) LINKS T. D. Noe, Table of n, a(n) for n=0..3517 EXAMPLE From Wolfdieter Lang, Nov 26 2013 (Start) In the start of table CT the 4 (mod 6) vertex labels CT(l,k) with l >= 4 and out-edges L and R have been put into brackets. The other labels have out-degree 1 with edge label V). A bar separates the left and right sub-tree originating at vertex 16. l\k  1    2    3      4     5     6     7    8    9     10 ... 0:   1 1:   2 2:   4 3:   8 4: (16) 5:   5 | 32 6: (10)|(64) 7:   3   20 | 21    128 8:   6  (40)| 42   (256) 9:  12   13   80 |   84    85    512 10: 24   26 (160) | 168   170  (1024) 11: 48  (52)  53    320 | 336   (340) 341 2048 12: 96   17  104   (106) (640) | 672  113  680 (682) (4096) ... l=13: 192 (34) (208) 35 212 213 1280 | 1344 (226) (1360) 227 1364 1365 8192. l=14: 384 11 68 69 416 (70) (424) 426 (2560) | 2688 75 452 453  2720 (454) (2728) 2730 (16384). l=15: 768 (22) (136) 138 (832) 23 140 141 848 852 853 5120 |  5376 150 (904) 906 (5440) 151 908 909 5456 5460 5461 32768. At level l=15 the left-right 4 (mod 6) structure becomes for the first time asymmetric. This leads at the next level l=16 to the number of vertices  12+3 | 12+2 = 15|14 in total 29 (odd), breaking the left-right branch symmetry. The alternative Collatz tree, mentioned in a comment above starts (here the vertex labeled 2 has now out-degree 0): l\k  1     2     3      4     5      6     7     8  ... 0:  (4) 1:   1     8 2:   2   (16) 3:   5    32 4:  (10) (64) 5:   3    20    21    128 6:   6   (40)   42   (256) 7:  12    13    80     84    85    512 8:  24    26  (160)   168   170  (1024) 9:  48   (52)   53    320   336   (340)  341  2048 ... (End) PROG (Python: replace leading dots by blanks before running) .def A088975(): ... yield 1 ... for x in A088975(): ....... if x > 4 and x % 6 == 4: ........... yield (x-1)/3 ....... yield 2*x CROSSREFS Cf. A127824 (terms at the same depth are sorted). A005186 (row length), A176866 (number of 4 (mod 6) labels, l>=3). Sequence in context: A225570 A178170 A127824 * A306601 A237851 A167425 Adjacent sequences:  A088972 A088973 A088974 * A088976 A088977 A088978 KEYWORD easy,tabf,nonn AUTHOR David Eppstein, Oct 31 2003 EXTENSIONS Keyword tabf, notation CT(l,k) and two Cf.s added - Wolfdieter Lang, Nov 26 2013. STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 23 12:28 EST 2020. Contains 332159 sequences. (Running on oeis4.)