login
A372586
Numbers k such that (sum of binary indices of k) + (sum of prime indices of k) is odd.
8
1, 2, 3, 4, 5, 8, 9, 12, 15, 16, 17, 20, 21, 29, 32, 36, 42, 43, 45, 46, 47, 48, 51, 53, 54, 55, 59, 60, 61, 63, 64, 65, 66, 67, 68, 71, 73, 78, 79, 80, 81, 84, 89, 91, 93, 94, 95, 97, 99, 101, 105, 110, 111, 113, 114, 115, 116, 118, 119, 121, 122, 125, 127
OFFSET
1,2
COMMENTS
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The even version is A372587.
FORMULA
Numbers k such that A029931(k) + A056239(k) is odd.
EXAMPLE
The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
{1} 1 ()
{2} 2 (1)
{1,2} 3 (2)
{3} 4 (1,1)
{1,3} 5 (3)
{4} 8 (1,1,1)
{1,4} 9 (2,2)
{3,4} 12 (2,1,1)
{1,2,3,4} 15 (3,2)
{5} 16 (1,1,1,1)
{1,5} 17 (7)
{3,5} 20 (3,1,1)
{1,3,5} 21 (4,2)
{1,3,4,5} 29 (10)
{6} 32 (1,1,1,1,1)
{3,6} 36 (2,2,1,1)
{2,4,6} 42 (4,2,1)
{1,2,4,6} 43 (14)
{1,3,4,6} 45 (3,2,2)
{2,3,4,6} 46 (9,1)
{1,2,3,4,6} 47 (15)
{5,6} 48 (2,1,1,1,1)
MATHEMATICA
prix[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
bix[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
Select[Range[100], OddQ[Total[bix[#]]+Total[prix[#]]]&]
CROSSREFS
Positions of odd terms in A372428, zeros A372427.
For minimum (A372437) we have A372439, complement A372440.
For length (A372441, zeros A071814) we have A372590, complement A372591.
For maximum (A372442, zeros A372436) we have A372588, complement A372589.
The complement is A372587.
For just binary indices:
- length: A000069, complement A001969
- sum: A158705, complement A158704
- minimum: A003159, complement A036554
- maximum: A053738, complement A053754
For just prime indices:
- length: A026424 (count A027193), complement A028260 (count A027187)
- sum: A300063 (count A058695), complement A300061 (count A058696)
- minimum: A340932 (count A026804), complement A340933 (count A026805)
- maximum: A244991 (count A027193), complement A244990 (count A027187)
A005408 lists odd numbers.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A031368 lists odd-indexed primes, even A031215.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.
Sequence in context: A325662 A275771 A118956 * A109850 A008749 A029000
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 14 2024
STATUS
approved