login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A026804 Number of partitions of n in which the least part is odd. 7
1, 1, 3, 3, 6, 8, 13, 16, 25, 33, 47, 61, 84, 109, 148, 189, 249, 319, 413, 522, 670, 842, 1066, 1330, 1668, 2068, 2574, 3171, 3915, 4800, 5888, 7175, 8753, 10617, 12879, 15552, 18772, 22570, 27125, 32480, 38867, 46372, 55275, 65707, 78047, 92470, 109456 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Also number of partitions of n in which the largest part occurs an odd number of times. Example: a(5)=6 because we have [5],[4,1],[3,2],[3,1,1],[2,1,1,1] and [1,1,1,1,1] ([2,2,1] does not qualify). - Emeric Deutsch, Apr 04 2006

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..1000

FORMULA

G.f.: Sum_{k>=1}((-1)^(k+1)*(-1+1/Product_{i>=k} (1-x^i))). a(n) = Sum_{k=1..n}(-1)^(k+1)*A026807(n, k). - Vladeta Jovovic, Aug 26 2003

G.f.: Sum_{j>=1}(x^j/(1+x^j)/Product_{i=1..j}(1-x^i)). - Vladeta Jovovic, Aug 11 2004

G.f.: Sum_{k>=1}(x^(2k-1)/Product_{j>=2k-1}(1-x^j)). - Emeric Deutsch, Apr 04 2006

EXAMPLE

a(5)=6 because we have [5],[4,1],[3,1,1],[2,2,1],[2,1,1,1] and [1,1,1,1,1] ([3,2] does not qualify).

MAPLE

g:=sum(x^(2*k-1)/product(1-x^j, j=2*k-1..50), k=1..50): gser:=series(g, x=0, 45): seq(coeff(gser, x, n), n=1..43); # Emeric Deutsch, Apr 04 2006

# second Maple program:

b:= proc(n, i) option remember; `if`(n<1 or i<1, 0, b(n, i-1)+

      `if`(n=i, irem(n, 2), 0)+`if`(i>n, 0, b(n-i, i)))

    end:

a:= n-> b(n$2):

seq(a(n), n=1..60);  # Alois P. Heinz, Jul 26 2015

MATHEMATICA

b[n_, i_] := b[n, i] = If[n < 1 || i < 1, 0, b[n, i - 1] + If[n == i, Mod[n, 2], 0] + If[i > n, 0, b[n - i, i]]]; a[n_] :=  b[n, n]; Table[a[n], {n, 1, 60}] (* Jean-Fran├žois Alcover, Oct 09 2015, after Alois P. Heinz *)

PROG

(PARI) b(n, i) = if(n<1 || i<1, 0, b(n, i - 1) + if(n==i, n%2 , 0) + if(i>n, 0, b(n - i, i)));

a(n) = b(n, n); \\ Indranil Ghosh, Jun 22 2017, after Maple code by Alois P. Heinz

CROSSREFS

Cf. A046746.

Sequence in context: A143592 A280197 A097307 * A240213 A205970 A104715

Adjacent sequences:  A026801 A026802 A026803 * A026805 A026806 A026807

KEYWORD

nonn

AUTHOR

Clark Kimberling

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 15:16 EDT 2018. Contains 315270 sequences. (Running on oeis4.)