login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A055396 Smallest prime dividing n is a(n)-th prime (a(1)=0). 106
0, 1, 2, 1, 3, 1, 4, 1, 2, 1, 5, 1, 6, 1, 2, 1, 7, 1, 8, 1, 2, 1, 9, 1, 3, 1, 2, 1, 10, 1, 11, 1, 2, 1, 3, 1, 12, 1, 2, 1, 13, 1, 14, 1, 2, 1, 15, 1, 4, 1, 2, 1, 16, 1, 3, 1, 2, 1, 17, 1, 18, 1, 2, 1, 3, 1, 19, 1, 2, 1, 20, 1, 21, 1, 2, 1, 4, 1, 22, 1, 2, 1, 23, 1, 3, 1, 2, 1, 24, 1, 4, 1, 2, 1, 3, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Grundy numbers of the game in which you decrease n by a number prime to n, and the game ends when 1 is reached. - Eric M. Schmidt, Jul 21 2013

a(n) = the smallest part of the partition having Heinz number n. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436. Example: a(21) = 2; indeed, the partition having Heinz number 21 = 3*7 is [2,4]. - Emeric Deutsch, Jun 04 2015

a(n) is the number of numbers whose largest proper divisor is n, i.e., for n>1, number of occurrences of n in A032742. - Stanislav Sykora, Nov 04 2016

For n > 1, a(n) gives the number of row where n occurs in arrays A083221 and A246278. - Antti Karttunen, Mar 07 2017

REFERENCES

John H. Conway, On Numbers and Games, 2nd Edition, p. 129.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

Wikipedia, Nimber (explains the term Grundy number).

Index entries for sequences computed from indices in prime factorization

Index entries for sequences generated by sieves

FORMULA

From Reinhard Zumkeller, May 22 2003: (Start)

a(n) = A049084(A020639(n)).

A000040(a(n)) = A020639(n); a(n) <= A061395(n).

(End)

From Antti Karttunen, Mar 07 2017: (Start)

A243055(n) = A061395(n) - a(n).

a(A276086(n)) = A257993(n).

(End)

EXAMPLE

a(15) = 2 because 15=3*5, 3<5 and 3 is the 2nd prime.

MAPLE

with(numtheory):

a:= n-> `if`(n=1, 0, pi(min(factorset(n)[]))):

seq(a(n), n=1..100);  # Alois P. Heinz, Aug 03 2013

MATHEMATICA

a[1] = 0; a[n_] := PrimePi[ FactorInteger[n][[1, 1]] ]; Table[a[n], {n, 1, 96}](* Jean-Fran├žois Alcover, Jun 11 2012 *)

PROG

(Haskell)

a055396 = a049084 . a020639  -- Reinhard Zumkeller, Apr 05 2012

(PARI) a(n)=if(n==1, 0, primepi(factor(n)[1, 1])) \\ Charles R Greathouse IV, Apr 23 2015

(Python)

from sympy import primepi, isprime, primefactors

def a049084(n): return primepi(n)*(1*isprime(n))

def a(n): return 0 if n==1 else a049084(min(primefactors(n))) # Indranil Ghosh, May 05 2017

CROSSREFS

Cf. A004280, A020639, A032742, A038179, A049084, A055399, A061395, A215366, A243055, A257993, A276086.

Cf. also A078898, A246277, A250469 and arrays A083221 and A246278.

Sequence in context: A128267 A028920 A260738 * A057499 A241919 A286469

Adjacent sequences:  A055393 A055394 A055395 * A055397 A055398 A055399

KEYWORD

nonn

AUTHOR

Henry Bottomley, May 15 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 24 11:40 EDT 2017. Contains 286975 sequences.