The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A027187 Number of partitions of n into an even number of parts. 28
 1, 0, 1, 1, 3, 3, 6, 7, 12, 14, 22, 27, 40, 49, 69, 86, 118, 146, 195, 242, 317, 392, 505, 623, 793, 973, 1224, 1498, 1867, 2274, 2811, 3411, 4186, 5059, 6168, 7427, 9005, 10801, 13026, 15572, 18692, 22267, 26613, 31602, 37619, 44533, 52815, 62338, 73680, 86716, 102162, 119918 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). Number of partitions of n in which greatest part is even. Number of partitions of n+1 into an odd number of parts, the least being 1. Also the number of partitions of n such that the number of even parts has the parity of n; see Comments at A027193. - Clark Kimberling, Feb 01 2014 Suppose that c(0) = 1, that c(1), c(2), ... are indeterminates, that d(0) = 1, and that d(n) = -c(n) - c(n-1)*d(1) - ... - c(0)*d(n-1).  When d(n) is expanded as a polynomial in c(1), c(2),..,c(n), the terms are of the form H*c(i_1)*c(i_2)*...*c(i_k).  Let P(n) = [c(i_1), c(i_2), ..., c(i_k)], a partition of n.  Then H is negative if P has an odd number of parts, and H is positive if P has an even number of parts.  That is, d(n) has A027193(n) negative coefficients, A027187(n) positive coefficients, and A000041 terms.  The maximal coefficient in d(n), in absolute value, is A102462(n). - Clark Kimberling, Dec 15 2016 REFERENCES Roland Bacher, P De La Harpe, Conjugacy growth series of some infinitely generated groups. 2016. hal-01285685v2; https://hal.archives-ouvertes.fr/hal-01285685/document N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; See p. 8, (7.323) and p. 39, Example 7. LINKS T. D. Noe, Table of n, a(n) for n = 0..999 George E. Andrews, David Newman, The Minimal Excludant in Integer Partitions, J. Int. Seq., Vol. 23 (2020), Article 20.2.3. N. J. Fine, Problem 4314, Amer. Math. Monthly, Vol. 57, 1950, 421-423. Mircea Merca, Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer, Journal of Number Theory, Volume 160, March 2016, Pages 60-75, function p_e(n). Michael Somos, Introduction to Ramanujan theta functions Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA a(n) = (A000041(n) + (-1)^n * A000700(n))/2. a(n) = p(n)-p(n-1)+p(n-4)-p(n-9)+... where p(n) is the number of unrestricted partitions of n, A000041. [Fine] - David Callan, Mar 14 2004 G.f.: A(q) = Sum_{n >= 0} a(n) q^n = 1 + q^2 + q^3 + 3 q^4 + 3 q^5 + 6 q^6 + ... = Sum_{n >= 0} q^(2n)/(q; q)_{2n} = ((Prod_{k >= 1} 1/(1-q^k) + (Prod_{k >= 1} 1/(1+q^k))/2 [Bill Gosper, Jun 25 2005] Also, let B(q) = Sum_{n >= 0} A027193(n) q^n = q + q^2 + 2 q^3 + 2 q^4 + 4 q^5 + 5 q^6 + ... Then B(q) = Sum_{n >= 0} q^(2n+1)/(q; q)_{2n+1} = ((Prod_{k >= 1} 1/(1-q^k) - (Prod_{k >= 1} 1/(1+q^k))/2. Also we have the following identity involving 2 X 2 matrices: Prod_{k >= 1} [ 1/(1-q^2k) q^k/(1-q^2k / q^k/(1-q^2k) 1/(1-q^2k) ] = [ A(q) B(q) / B(q) A(q) ] [Bill Gosper, Jun 25 2005] a(2*n) = A046682(2*n), a(2*n+1) = A000701(2*n+1); a(n) = A000041(n)-A027193(n). - Reinhard Zumkeller, Apr 22 2006 Expansion of (1 + phi(-q)) / (2 * f(-q)) where phi(), f() are Ramanujan theta functions. - Michael Somos, Aug 19 2006 G.f.: (Sum_{k>=0} (-1)^k * x^(k^2)) / (Product_{k>0} (1 - x^k)). - Michael Somos, Aug 19 2006 EXAMPLE G.f. = 1 + x^2 + x^3 + 3*x^4 + 3*x^5 + 6*x^6 + 7*x^7 + 12*x^8 + 14*x^9 + 22*x^10 + ... MATHEMATICA f[n_] := Length[Select[IntegerPartitions[n], IntegerQ[First[#]/2] &]]; Table[f[n], {n, 1, 30}] (* Clark Kimberling, Mar 13 2012 *) a[ n_] := SeriesCoefficient[ (1 + EllipticTheta[ 4, 0, x]) / (2 QPochhammer[ x]), {x, 0, n}]; (* Michael Somos, May 06 2015 *) a[ n_] := If[ n < 0, 0, Length@Select[ IntegerPartitions[n], EvenQ[Length @ #] &]]; (* Michael Somos, May 06 2015 *) PROG (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( sum( k=0, sqrtint(n), (-x)^k^2, A) / eta(x + A), n))}; /* Michael Somos, Aug 19 2006 */ (PARI) q='q+O('q^66); Vec( (1/eta(q)+eta(q)/eta(q^2))/2 ) \\ Joerg Arndt, Mar 23 2014 CROSSREFS Cf. A027193, A000701, A046682, A026838, A102462. Sequence in context: A088571 A325834 A241832 * A056508 A050065 A298732 Adjacent sequences:  A027184 A027185 A027186 * A027188 A027189 A027190 KEYWORD nonn AUTHOR EXTENSIONS Offset changed to 0 by Michael Somos, Jul 24 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 9 19:46 EDT 2020. Contains 335545 sequences. (Running on oeis4.)