OFFSET
1,2
COMMENTS
A Truchet tile is an example of a tile that is fixed under matrix transposition but no other symmetries.
LINKS
Peter Kagey, Illustration of a(2)=17
Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023. See also J. Int. Seq., (2024) Vol. 27, Art. No. 24.6.1, pp. A-21, A-23.
Eric Weisstein's World of Mathematics, Truchet Tiling
MATHEMATICA
A367536[n_] := 1/(8n^2) (DivisorSum[n, Function[d, DivisorSum[n, Function[c, EulerPhi[c] EulerPhi[d] 4^(n^2/LCM[c, d])]]]] +If[OddQ[n], n*DivisorSum[n, Function[c, EulerPhi[c] 2^(n^2/c + 1)]], n*DivisorSum[n, Function[c, EulerPhi[c] (4^(n^2/LCM[2, c]) + 2^(n^2/c + 1) + If[OddQ[c], 0, 4^(n^2/c)])]] + n^2 (3*2^(n^2 - 2) + 2^(n^2/2))])
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Kagey, Dec 13 2023
STATUS
approved