OFFSET
1,2
LINKS
Peter Kagey, Table of n, a(n) for n = 1..57
Peter Kagey, The eighteen tilings of the 3 x 3 torus.
Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023.
EXAMPLE
For n = 3, the following four tilings are considered equivalent:
*---*->-+---+ +---+->-*---* *---*->-+---+ +---+->-+---+
| / | \ | \ | | / | / | \ | | \ | / | / | | / | \ | \ |
*---*---+---+ +---+---*---* *---*---+---+ *---*---+---+
^ / | / | \ ^ = ^ / | \ | \ ^ = ^ \ | / | \ ^ = ^ \ | / | / ^
+---+---+---+ +---+---+---+ +---+---+---+ *---*---+---+
| \ | / | / | | \ | \ | / | | / | \ | \ | | \ | / | \ |
+---+->-+---+ +---+->-+---+ +---+->-+---+ +---+->-+---+
The transformations are horizontal reflection, shifting to the right, and shifting down.
MATHEMATICA
a[n_] := 1/(8*n^2)*(DivisorSum[n, Function[d, DivisorSum[n, Function[c, EulerPhi[c] EulerPhi[d] 2^(n^2/LCM[c, d])]]]] + If[OddQ[n], n^2*2^((n^2 + 1)/2), n^2/4 (3*2^(n^2/2) + 2^((n^2 + 4)/2))] + 2*If[EvenQ[n], n/2*DivisorSum[n, Function[c, EulerPhi[c] (2^(n^2/LCM[2, c]) + If[OddQ[c], 0, 2^(n^2/c)])]], n*DivisorSum[n, Function[c, EulerPhi[c]*If[OddQ[c], 0, 2^(n^2/c)]]]] + If[OddQ[n], 0, n^2 (2^(n^2/4))] + 2*n*DivisorSum[n, Function[d, EulerPhi[d]*Which[OddQ[d], 2^((n^2 + n)/(2 d)), EvenQ[d], 2^(n^2/(2 d))]]])
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Kagey, Nov 17 2017
STATUS
approved