login
A295223
Number of tilings of the n X n torus, using diagonal lines to connect the gridpoints.
10
1, 4, 18, 669, 170440, 238773358, 1436110601256, 36028800332480074, 3731252530927004638384, 1584563250286480205777197264, 2746338834266357074512496613490144, 19358285762613388151183577985346072926384, 553468075675608205710323628035216140349636855680
OFFSET
1,2
LINKS
Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023.
EXAMPLE
For n = 3, the following four tilings are considered equivalent:
*---*->-+---+ +---+->-*---* *---*->-+---+ +---+->-+---+
| / | \ | \ | | / | / | \ | | \ | / | / | | / | \ | \ |
*---*---+---+ +---+---*---* *---*---+---+ *---*---+---+
^ / | / | \ ^ = ^ / | \ | \ ^ = ^ \ | / | \ ^ = ^ \ | / | / ^
+---+---+---+ +---+---+---+ +---+---+---+ *---*---+---+
| \ | / | / | | \ | \ | / | | / | \ | \ | | \ | / | \ |
+---+->-+---+ +---+->-+---+ +---+->-+---+ +---+->-+---+
The transformations are horizontal reflection, shifting to the right, and shifting down.
MATHEMATICA
a[n_] := 1/(8*n^2)*(DivisorSum[n, Function[d, DivisorSum[n, Function[c, EulerPhi[c] EulerPhi[d] 2^(n^2/LCM[c, d])]]]] + If[OddQ[n], n^2*2^((n^2 + 1)/2), n^2/4 (3*2^(n^2/2) + 2^((n^2 + 4)/2))] + 2*If[EvenQ[n], n/2*DivisorSum[n, Function[c, EulerPhi[c] (2^(n^2/LCM[2, c]) + If[OddQ[c], 0, 2^(n^2/c)])]], n*DivisorSum[n, Function[c, EulerPhi[c]*If[OddQ[c], 0, 2^(n^2/c)]]]] + If[OddQ[n], 0, n^2 (2^(n^2/4))] + 2*n*DivisorSum[n, Function[d, EulerPhi[d]*Which[OddQ[d], 2^((n^2 + n)/(2 d)), EvenQ[d], 2^(n^2/(2 d))]]])
CROSSREFS
Sequence in context: A082022 A354303 A114574 * A173222 A342467 A367533
KEYWORD
nonn
AUTHOR
Peter Kagey, Nov 17 2017
STATUS
approved