OFFSET
1,2
LINKS
Peter Kagey, Illustration of a(3)=18
Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023. See also J. Int. Seq., (2024) Vol. 27, Art. No. 24.6.1, pp. A-21, A-22.
MATHEMATICA
A367533[n_] := 1/(8 n^2) * (DivisorSum[n, Function[d, DivisorSum[n, Function[c, EulerPhi[c] EulerPhi[d] 2^(n^2/LCM[c, d])]]]] + If[OddQ[n], n^2*2^((n^2 + 1)/2), n^2/4 (3*2^(n^2/2) + 2^((n^2 + 4)/2))] + 2*If[EvenQ[n], n/2*DivisorSum[n, Function[c, EulerPhi[c] (2^(n*n/LCM[2, c]) + 2^((n - 2)*n/LCM[2, c])*2^(2 n/c))]], n*DivisorSum[n, Function[c, EulerPhi[c] (2^((n - 1)*n/LCM[2, c])*2^(n/c))]]] + 2*If[OddQ[n], 0, n^2 2^(n^2/4 - 1)] + 2*n*DivisorSum[n, Function[d, EulerPhi[d]*Which[OddQ[d], 0, EvenQ[d], 2^(n^2/(2d))]]])
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Kagey, Dec 13 2023
STATUS
approved