OFFSET
0,3
COMMENTS
A Truchet tile is a unit square split along the diagonal into two triangles, one black and the other white. It has four orientations, with the white half at the NW, NE, SE, and SW. There are 4^(n^2) ways to tile an n X n square with Truchet tiles if rotations and reflections are counted as different. The number of tilings up to symmetry can be found using Burnside's lemma.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..40
Peter Kagey, Illustration of the a(2) = 43 tilings of the 2 X 2 grid.
Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv:2311.13072 [math.CO], 2023. See p. 3.
Eric Weisstein's World of Mathematics, Truchet Tiling
Wikipedia, Truchet tiles
FORMULA
a(n) = (4^(n^2) + 5*4^(n^2/2) + 2*4^(n^2/4)) / 8 if n is even.
a(n) = (4^(n^2) + 2*4^(n^2/2)) / 8 if n is odd.
MATHEMATICA
f[n_]:=If[EvenQ[n], (4^(n^2) + 5 4^(n^2/2) + 2 4^(n^2/4))/8, (4^(n^2) + 2 4^(n^2/2))/8]; Join[{1}, Array[f, 60]] (* Vincenzo Librandi, Apr 09 2018 *)
PROG
(Python) def a(n): return (4**(n*n)+2**(n*n+1))//8 if n%2 else (4**(n*n)+5*4**(n*n//2)+2*4**(n*n//4))//8
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
David Radcliffe, Apr 08 2018
STATUS
approved