

A228195


Primes with the property that the sum of the cubes of their digits plus the prime equals another prime squared.


2



17, 2897, 11471, 15527, 19949, 26693, 26783, 72467, 78041, 142757, 159209, 216791, 350747, 366917, 672593, 725891, 775007, 1187939, 1529153, 1659737, 2024093, 2035097, 2035349, 2105231, 2127761, 2598929, 2645933, 2917799, 3322439, 3497993, 3970643, 4042697, 4067513, 4280051, 4329257, 4464017, 5839397
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 1..10000


EXAMPLE

17 is a term since (1^3 + 7^3) + 17 = 19^2.
2897 is a term since (2^3 + 8^3 + 9^3 + 7^3) + 2897 = 67^2.
11471 is a term since (1^3 + 1^3 + 4^3 + 7^3 + 1^3) + 11471 = 109^2.


PROG

(PARI) is(n)=my(d=digits(n), k); issquare(sum(i=1, #d, d[i]^3)+n, &k) && isprime(k) && isprime(n) \\ Charles R Greathouse IV, Jun 16 2014
(PARI) searchdigit(n)=my(v=List(), N1=10^(n1), N2=10^n, t=729*n, d, k, p2); forprime(p=sqrtint(N1)+1, sqrtint(N2+t), p2=p^2; forprime(q=max(N1, p2t+2), min(N2, p22), d=digits(q); if(sum(i=1, #d, d[i]^3)+q==p2, listput(v, q)))); Vec(v)
v=[]; for(n=1, 9, v=concat(v, searchdigit(n))); v \\ Charles R Greathouse IV, Jun 16 2014


CROSSREFS

Sequence in context: A198594 A138199 A125000 * A032909 A239165 A329168
Adjacent sequences: A228192 A228193 A228194 * A228196 A228197 A228198


KEYWORD

nonn,base,less


AUTHOR

Will Gosnell, Aug 15 2013


EXTENSIONS

a(10)a(37) from Charles R Greathouse IV, Jun 16 2014


STATUS

approved



