login
A366537
The sum of unitary divisors of the cubefree numbers (A004709).
5
1, 3, 4, 5, 6, 12, 8, 10, 18, 12, 20, 14, 24, 24, 18, 30, 20, 30, 32, 36, 24, 26, 42, 40, 30, 72, 32, 48, 54, 48, 50, 38, 60, 56, 42, 96, 44, 60, 60, 72, 48, 50, 78, 72, 70, 54, 72, 80, 90, 60, 120, 62, 96, 80, 84, 144, 68, 90, 96, 144, 72, 74, 114, 104, 100, 96
OFFSET
1,2
LINKS
FORMULA
a(n) = A034448(A004709(n)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(3)^2 * Product_{p prime} (1 + 1/p^2 - 2/p^3 + 1/p^4 - 1/p^5) = 1.665430860774244601005... .
The asymptotic mean of the unitary abundancy index of the cubefree numbers: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A004709(k) = c / zeta(3) = 1.38548421160152785073... .
MATHEMATICA
s[n_] := Module[{f = FactorInteger[n], e}, e = f[[;; , 2]]; If[AllTrue[e, # < 3 &], Times @@ (1 + Power @@@ f), Nothing]]; s[1] = 1; Array[s, 100]
PROG
(PARI) lista(max) = for(k = 1, max, my(f = factor(k), e = f[, 2], iscubefree = 1); for(i = 1, #e, if(e[i] > 2, iscubefree = 0; break)); if(iscubefree, print1(prod(i = 1, #e, 1 + f[i, 1]^e[i]), ", ")));
(Python)
from sympy.ntheory.factor_ import udivisor_sigma
from sympy import mobius, integer_nthroot
def A366537(n):
def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x, 3)[0]+1))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
return udivisor_sigma(m) # Chai Wah Wu, Aug 05 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Oct 12 2023
STATUS
approved