login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A034676 Sum of squares of unitary divisors of n. 2
1, 5, 10, 17, 26, 50, 50, 65, 82, 130, 122, 170, 170, 250, 260, 257, 290, 410, 362, 442, 500, 610, 530, 650, 626, 850, 730, 850, 842, 1300, 962, 1025, 1220, 1450, 1300, 1394, 1370, 1810, 1700, 1690, 1682, 2500, 1850, 2074, 2132, 2650, 2210, 2570, 2402, 3130 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Also sum of unitary divisors of n^2. - Vladeta Jovovic, Nov 13 2001

If b(n,k)=sum of k-th powers of unitary divisors of n then b(n,k) is multiplicative with b(p^e,k)=p^(k*e)+1. - Vladeta Jovovic, Nov 13 2001

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

Eric Weisstein's World of Mathematics, Unitary Divisor Function

Wikipedia, Unitary_divisor

FORMULA

Multiplicative with a(p^e)=p^(2*e)+1.

Dirichlet g.f. zeta(s)*zeta(s-2)/zeta(2*s-2). - R. J. Mathar, Mar 04 2011

MATHEMATICA

f[n_] := Block[{d = Divisors@ n}, Plus @@ (Select[d, GCD[#, n/#] == 1 &]^2)]; Array[f, 50] (* Robert G. Wilson v, Mar 04 2011 *)

PROG

(PARI) A034676_vec(len)={

        a000012=direuler(p=2, len, 1/(1-X)) ;

        a000290=direuler(p=2, len, 1/(1-p^2*X)) ;

        a000290x=direuler(p=2, len, 1-p^2*X^2) ;

        dirmul(dirmul(a000012, a000290), a000290x)

}

A034676_vec(70) ; /* via D.g.f., R. J. Mathar, Mar 05 2011 */

(Haskell)

a034676 = sum . map (^ 2) . a077610_row

-- Reinhard Zumkeller, Feb 12 2012

CROSSREFS

Cf. A034444, A034448, A034677, A034678-A034682.

Cf. A077610.

Sequence in context: A229997 A193053 A098749 * A076598 A080341 A086653

Adjacent sequences:  A034673 A034674 A034675 * A034677 A034678 A034679

KEYWORD

nonn,mult

AUTHOR

Erich Friedman

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 19 18:23 EST 2014. Contains 252239 sequences.