login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A098749 Let f[n_]=((n^4-n^3-1)/ (n^3-n-1))^2; then a(n) = Floor[f[n]]. 0
1, 1, 1, 5, 10, 17, 26, 37, 50, 65, 82, 101, 122, 145, 170, 197, 226, 257, 290, 325, 362, 401, 442, 485, 530, 577, 626, 677, 730, 785, 842, 901, 962, 1025, 1090, 1157, 1226, 1297, 1370, 1445, 1522, 1601, 1682, 1765, 1850, 1937, 2026, 2117, 2210, 2305, 2402 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Table of n, a(n) for n=0..50.

FORMULA

It is easy to show that Floor[((n^4-n^3-1)/ (n^3-n-1))^2] = (n-1)^2 + 1 for n >= 3. So this is essentially the same sequence as A002522. - Juan Jose Alba Gonzalez, Nov 09 2006.

MATHEMATICA

(* polynomial sequence with Theta1 to Theta0 pattern*) digits=200 f[n_]=((n^4-n^3-1)/ (n^3-n-1))^2 a=Table[Floor[f[n]], {n, 0, digits}]

CROSSREFS

Cf. A002522.

Sequence in context: A229997 A277186 A193053 * A034676 A076598 A306011

Adjacent sequences:  A098746 A098747 A098748 * A098750 A098751 A098752

KEYWORD

nonn

AUTHOR

Roger L. Bagula, Oct 01 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 27 21:52 EDT 2020. Contains 334671 sequences. (Running on oeis4.)