login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A034448 usigma(n) = sum of unitary divisors of n (divisors d such that gcd(d, n/d)=1); also called UnitarySigma(n). 295
1, 3, 4, 5, 6, 12, 8, 9, 10, 18, 12, 20, 14, 24, 24, 17, 18, 30, 20, 30, 32, 36, 24, 36, 26, 42, 28, 40, 30, 72, 32, 33, 48, 54, 48, 50, 38, 60, 56, 54, 42, 96, 44, 60, 60, 72, 48, 68, 50, 78, 72, 70, 54, 84, 72, 72, 80, 90, 60, 120, 62, 96, 80, 65, 84, 144, 68, 90, 96, 144 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Row sums of the triangle in A077610. - Reinhard Zumkeller, Feb 12 2002

Multiplicative with a(p^e) = p^e+1 for e>0. - Franklin T. Adams-Watters, Sep 11 2005

LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000

O. A. Agustin-Aquino, Prime injections and quasipolarities, Matematiche 69 (2014) 159-168

Steven R. Finch, Unitarism and Infinitarism, February 25, 2004. [Cached copy, with permission of the author]

Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 50.

Carl Pomerance and Hee-Sung Yang, Variant of a theorem of Erdos on the sum-of-proper-divisors function, Math. Comp., to appear (2014).

Tim Trudgian, The sum of the unitary divisor function, Publications de l'Institut Mathématique 2015 Vol. 97, Issue 111, pp. 175-180.

Eric Weisstein's World of Mathematics, Unitary Divisor Function

Wikipedia, Unitary divisor

FORMULA

If n = Product p_i^e_i, usigma(n) = Product (p_i^e_i + 1). - Vladeta Jovovic, Apr 19 2001

Dirichlet generating function: zeta(s)*zeta(s-1)/zeta(2s-1). - Franklin T. Adams-Watters, Sep 11 2005

Conjecture: a(n) = sigma(n^2/rad(n))/sigma(n/rad(n)), where sigma = A000203 and rad = A007947. - Velin Yanev, Aug 20 2017

This conjecture is easily verified since all the functions involved are multiplicative and proving it for prime powers is straightforward. - Juan José Alba González, Mar 19 2021

From Amiram Eldar, May 29 2020: (Start)

Sum_{d|n, gcd(d, n/d) = 1} a(d) * (-1)^omega(n/d) = n.

a(n) <= sigma(n) = A000203(n), with equality if and only if n is squarefree (A005117). (End)

Sum_{k=1..n} a(k) ~ Pi^2 * n^2 / (12*zeta(3)). - Vaclav Kotesovec, May 20 2021

EXAMPLE

Unitary divisors of 12 are 1, 3, 4, 12. Or, 12=3*2^2 hence usigma(12)=(3+1)*(2^2+1)=20.

MAPLE

A034448 := proc(n) local ans, i:ans := 1: for i from 1 to nops(ifactors(n)[ 2 ]) do ans := ans*(1+ifactors(n)[ 2 ][ i ][ 1 ]^ifactors(n)[ 2 ] [ i ] [ 2 ]): od: RETURN(ans) end:

a := proc(n) local i; numtheory[divisors](n); select(d -> igcd(d, n/d)=1, %); add(i, i=%) end; # Peter Luschny, May 03 2009

MATHEMATICA

usigma[n_] := Block[{d = Divisors[n]}, Plus @@ Select[d, GCD[ #, n/# ] == 1 &]]; Table[ usigma[n], {n, 71}] (* Robert G. Wilson v, Aug 28 2004 *)

Table[DivisorSum[n, # &, CoprimeQ[#, n/#] &], {n, 70}] (* Michael De Vlieger, Mar 01 2017 *)

usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])]; Array[usigma, 100] (* faster since avoids generating divisors, Giovanni Resta, Apr 23 2017 *)

PROG

(PARI) A034448(n)=sumdiv(n, d, if(gcd(d, n/d)==1, d)) \\ Rick L. Shepherd

(PARI) A034448(n) = {my(f=factorint(n)); prod(k=1, #f[, 2], f[k, 1]^f[k, 2]+1)} \\ Andrew Lelechenko, Apr 22 2014

(PARI) a(n)=sumdivmult(n, d, if(gcd(d, n/d)==1, d)) \\ Charles R Greathouse IV, Sep 09 2014

(Haskell) a034448 = sum . a077610_row  -- Reinhard Zumkeller, Feb 12 2012

(Python 3.8+)

from math import prod

from sympy import factorint

def A034448(n): return prod(p**e+1 for p, e in factorint(n).items()) # Chai Wah Wu, Jun 20 2021

CROSSREFS

Cf. A000203, A034444, A034460, A047994, A048250, A064000, A064609.

Cf. A063937 (squares > 1).

Cf. A188999, A301981, A301982.

Sequence in context: A154664 A191750 A346613 * A331107 A069184 A181549

Adjacent sequences:  A034445 A034446 A034447 * A034449 A034450 A034451

KEYWORD

nonn,easy,nice,mult

AUTHOR

N. J. A. Sloane, Dec 11 1999

EXTENSIONS

More terms from Erich Friedman

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 7 09:17 EDT 2022. Contains 357270 sequences. (Running on oeis4.)