OFFSET
1,2
COMMENTS
A semi-unitary divisor of n is defined as the largest divisor d of n such that the largest divisor of d that is a unitary divisor of n/d is 1 (see A322483).
REFERENCES
J. Chidambaraswamy, Sum functions of unitary and semi-unitary divisors, J. Indian Math. Soc., Vol. 31 (1967), pp. 117-126.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
Pentti Haukkanen, Basic properties of the bi-unitary convolution and the semi-unitary convolution, Indian J. Math, Vol. 40 (1998), pp. 305-315.
D. Suryanarayana and V. Siva Rama Prasad, Sum functions of k-ary and semi-k-ary divisors, Journal of the Australian Mathematical Society, Vol. 15, No. 2 (1973), pp. 148-162.
Laszlo Tóth, Sum functions of certain generalized divisors, Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math., Vol. 41 (1998), pp. 165-180.
FORMULA
Multiplicative with a(p^e) = sigma(p^floor((e-1)/2)) + p^e = (p^floor((e+1)/2) - 1)/(p-1) + p^e.
In particular a(p) = p + 1, a(p^2) = p^2 + 1, a(p^3) = p^3 + p + 1.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(2)*zeta(3)/2) * Product_{p prime} (1 - 2/p^3 + 1/p^5) = 0.7004703314... . - Amiram Eldar, Nov 24 2022
EXAMPLE
The semi-unitary divisors of 8 are 1, 2, 8 (4 is not semi-unitary divisor since the largest divisor of 4 that is a unitary divisor of 8/4 = 2 is 2 > 1), and their sum is 11, thus a(8) = 11.
MATHEMATICA
f[p_, e_] := (p^Floor[(e+1)/2] - 1)/(p-1) + p^e; susigma[n_] := If[n==1, 1, Times @@ (f @@@ FactorInteger[n])]; Array[susigma, 100]
PROG
(PARI) a(n) = {my(f = factor(n)); for (k=1, #f~, my(p=f[k, 1], e=f[k, 2]); f[k, 1] = (p^((e+1)\2) - 1)/(p-1) + p^e; f[k, 2] = 1; ); factorback(f); } \\ Michel Marcus, Dec 14 2018
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Amiram Eldar, Dec 11 2018
STATUS
approved