login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A322484 Semi-unitary highly composite numbers: where the number of semi-unitary divisors of n (A322483) increases to a record. 1
1, 2, 6, 24, 30, 120, 210, 840, 2310, 7560, 9240, 30030, 83160, 120120, 480480, 1081080, 1921920, 2042040, 8168160, 18378360, 32672640, 38798760, 155195040, 349188840, 620780160, 892371480, 3569485920, 8031343320, 14277943680, 25878772920, 103515091680 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The record numbers of semi-unitary divisors are 1, 2, 4, 6, 8, 12, 16, 24, 32, 36, 48, 64, 72, 96, 128, 144, 160, 192, 256, 288, 320, 384, 512, 576, 640, 768, 1024, 1152, 1280, 1536, 2048, ... (see the link for more values).

LINKS

Table of n, a(n) for n=1..31.

Amiram Eldar, Table of n, a(n), A322483(a(n)) for n = 1..63

MATHEMATICA

f[p_, e_] := Floor[(e+3)/2]; sud[n_] := If[n==1, 1, Times @@ (f @@@ FactorInteger[n])]; seq={}; sm=0; Do[s = sud[k]; If[s > sm, AppendTo[seq, k]; sm = s], {k, 1, 100000}]; seq

PROG

(PARI) nbu(n) = {my(f = factor(n)); for (k=1, #f~, f[k, 1] = (f[k, 2]+3)\2; f[k, 2] = 1; ); factorback(f); } \\ A322483

lista(nn) = {my(m = 0, nb); for (n=1, nn, nb = nbu(n); if (nb > m, m = nb; print1(n, ", ")); ); } \\ Michel Marcus, Dec 14 2018

CROSSREFS

Analogous sequences: A002182 (regular divisors), A002110 (unitary divisors), A293185 (bi-unitary).

Cf. A322483.

Sequence in context: A319205 A110728 A190424 * A066332 A069141 A158977

Adjacent sequences:  A322481 A322482 A322483 * A322485 A322486 A322487

KEYWORD

nonn

AUTHOR

Amiram Eldar, Dec 11 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 25 03:03 EDT 2019. Contains 326318 sequences. (Running on oeis4.)