This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A069184 Sum of divisors d of n such that d or n/d is odd. 5
 1, 3, 4, 5, 6, 12, 8, 9, 13, 18, 12, 20, 14, 24, 24, 17, 18, 39, 20, 30, 32, 36, 24, 36, 31, 42, 40, 40, 30, 72, 32, 33, 48, 54, 48, 65, 38, 60, 56, 54, 42, 96, 44, 60, 78, 72, 48, 68, 57, 93, 72, 70, 54, 120, 72, 72, 80, 90, 60, 120, 62, 96, 104, 65, 84, 144, 68, 90, 96 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Might be called UnitaryOrdinarySigma(n): If n=Product p_i^r_i then UOSigma(n)=UnitarySigma(2^r_1)*Sigma(n/2^r_1)=(2^r_1+1)*Product (p_i^(r_i+1)-1)/(p_i-1), p_i is not 2. - Yasutoshi Kohmoto, Jun 11 2005 LINKS Antti Karttunen, Table of n, a(n) for n = 1..16384 FORMULA Multiplicative with a(2^e) = 2^e+1 and a(p^e) = (p^(e+1)-1)/(p-1) for an odd prime p. G.f.: Sum_{m>0} m*x^m*(1+x^m+x^(2*m)-x^(3*m))/(1-x^(4*m)). Dirichlet g.f.: zeta(s) *zeta(s-1) *(2^(2-3s)-2^(1-2s)-2^(1-s)+1) / (1-2^(1-s)). - R. J. Mathar, Jun 02 2011 Sum_{k=1..n} a(k) ~ 7*Pi^2*n^2 / 96. - Vaclav Kotesovec, Feb 08 2019 EXAMPLE UOSigma(2^4*7^2) = UnitarySigma(2^4)*sigma(7^2) = 17*57 = 969. MAPLE A069184 := proc(n) local a, f, p, e; a := 1 ; for f in ifactors(n)[2] do p := op(1, f) ; e := op(2, f) ; if p = 2 then a := a*(2^e+1) ; else a := a*(p^(e+1)-1)/(p-1) ; end if; end do; a ; end proc: # R. J. Mathar, Jun 02 2011 MATHEMATICA Table[ Sum[ d*Boole[ OddQ[d] || OddQ[n/d] ], {d, Divisors[n]}], {n, 1, 69}] (* Jean-François Alcover, Mar 26 2013 *) PROG (PARI) a(n) = sumdiv(n, d, d*((d % 2) || ((n/d) % 2))); \\ Michel Marcus, Apr 10 2014 (PARI) a(n)=my(e=valuation(n, 2)); sigma(n>>e) * if(e, 2^e+1, 1) \\ Charles R Greathouse IV, Apr 10 2014 CROSSREFS Cf. A069733, A107749, A092356. Sequence in context: A154664 A191750 A034448 * A181549 A241405 A322485 Adjacent sequences:  A069181 A069182 A069183 * A069185 A069186 A069187 KEYWORD mult,nonn AUTHOR Vladeta Jovovic, Apr 10 2002 EXTENSIONS Edited by N. J. A. Sloane, Aug 29 2008 at the suggestion of R. J. Mathar STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 04:40 EDT 2019. Contains 328211 sequences. (Running on oeis4.)