The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A298212 Smallest n such that A060645(a(n)) = 0 (mod n), i.e., x=A023039(a(n)) and y=A060645(a(n)) is the fundamental solution of the Pell equation x^2 - 5*(n*y)^2 = 1. 3
 1, 1, 2, 1, 5, 2, 4, 2, 2, 5, 5, 2, 7, 4, 10, 4, 3, 2, 3, 5, 4, 5, 4, 2, 25, 7, 6, 4, 7, 10, 5, 8, 10, 3, 20, 2, 19, 3, 14, 10, 10, 4, 22, 5, 10, 4, 8, 4, 28, 25, 6, 7, 9, 6, 5, 4, 6, 7, 29, 10, 5, 5, 4, 16, 35, 10, 34, 3, 4, 20, 35, 2, 37, 19, 50 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS The fundamental solution of the Pell equation  x^2 - 5*(n*y)^2 = 1, is the smallest solution of x^2 - 5*y^2 = 1 satisfying y = 0 (mod n). REFERENCES Michael J. Jacobson, Jr. and Hugh C. Williams, Solving the Pell Equation, Springer, 2009, pages 1-17. LINKS A.H.M. Smeets, Table of n, a(n) for n = 1..20000 H. W. Lenstra Jr., Solving the Pell Equation, Notices of the AMS, Vol.49, No.2, Feb. 2002, pp. 182-192. FORMULA a(n) <= n. a(A000351(n)) = A000351(n). A023039(a(n)) = A002350(5*n^2). A060645(a(n)) = A002349(5*n^2). if n | m then a(n) | a(m). a(5^m) = 5^m for m>=0. In general: if p is prime and p = 1 (mod 4) then: a(n) = n iff n = p^m, for m>=0. MATHEMATICA b[n_] := b[n] = Switch[n, 0, 0, 1, 4, _, 18 b[n - 1] - b[n - 2]]; a[n_] := For[k = 1, True, k++, If[Mod[b[k], n] == 0, Return[k]]]; a /@ Range[100] (* Jean-François Alcover, Nov 16 2019 *) PROG Python: xf, yf = 9, 4 x, n = 2*xf, 0 while n < 20000: ....n = n+1 ....y1, y0, i = 0, yf, 1 ....while y0%n != 0: ........y1, y0, i = y0, x*y0-y1, i+1 ....print(n, i) CROSSREFS Cf. A298210, A298211. Sequence in context: A144019 A085045 A093664 * A087620 A253809 A262213 Adjacent sequences:  A298209 A298210 A298211 * A298213 A298214 A298215 KEYWORD nonn AUTHOR A.H.M. Smeets, Jan 15 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 26 11:00 EST 2020. Contains 331279 sequences. (Running on oeis4.)