

A002350


Take solution to Pellian equation x^2  n*y^2 = 1 with smallest positive y and x >= 0; sequence gives a(n) = x, or 1 if n is a square. A002349 gives values of y.
(Formerly M2240 N0890)


20



1, 3, 2, 1, 9, 5, 8, 3, 1, 19, 10, 7, 649, 15, 4, 1, 33, 17, 170, 9, 55, 197, 24, 5, 1, 51, 26, 127, 9801, 11, 1520, 17, 23, 35, 6, 1, 73, 37, 25, 19, 2049, 13, 3482, 199, 161, 24335, 48, 7, 1, 99, 50, 649, 66249, 485, 89, 15, 151, 19603, 530, 31, 1766319049, 63, 8, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


REFERENCES

A. Cayley, Report of a committee appointed for the purpose of carrying on the tables connected with the Pellian equation ..., Collected Mathematical Papers. Vols. 113, Cambridge Univ. Press, London, 18891897, Vol. 13, pp. 430443.
C. F. Degen, Canon Pellianus. Hafniae, Copenhagen, 1817.
D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 55.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

T. D. Noe and Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
A. Cayley, Report of a committee appointed for the purpose of carrying on the tables connected with the Pellian equation ..., Collected Mathematical Papers. Vols. 113, Cambridge Univ. Press, London, 18891897, Vol. 13, pp. 430443. (Annotated scanned copy)
L. Beeckmans, Squares expressible as sum of consecutive squares, Amer. Math. Monthly, 101 (1994), 437442.
L. Euler, De solutione problematum diophanteorum per numeros integros (English and Latin), par. 17.
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)


EXAMPLE

For n = 1, 2, 3, 4, 5 solutions are (x,y) = (1, 0), (3, 2), (2, 1), (1, 0), (9, 4).


MATHEMATICA

PellSolve[(m_Integer)?Positive] := Module[{cf, n, s}, cf = ContinuedFraction[ Sqrt[m]]; n = Length[ Last[cf]]; If[ OddQ[n], n = 2*n]; s = FromContinuedFraction[ ContinuedFraction[ Sqrt[m], n]]; {Numerator[s], Denominator[s]}]; f[n_] := If[ !IntegerQ[ Sqrt[n]], PellSolve[n][[1]], 1]; Table[ f[n], {n, 0, 65}]


CROSSREFS

Cf. A002349, A006702, A006703, A006704, A006705. See A033316, A033315, A033319 for records.
Sequence in context: A193791 A160760 A152860 * A109267 A185416 A193918
Adjacent sequences: A002347 A002348 A002349 * A002351 A002352 A002353


KEYWORD

nonn,nice,easy,changed


AUTHOR

N. J. A. Sloane.


STATUS

approved



