login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298211
Smallest n such that A001353(a(n)) == 0 (mod n), i.e., x=A001075(a(n)) and y=A001353(a(n)) is the fundamental solution of the Pell equation x^2 - 3*(n*y)^2 = 1.
4
1, 2, 3, 2, 3, 6, 4, 4, 9, 6, 5, 6, 6, 4, 3, 8, 9, 18, 5, 6, 12, 10, 11, 12, 15, 6, 27, 4, 15, 6, 16, 16, 15, 18, 12, 18, 18, 10, 6, 12, 7, 12, 11, 10, 9, 22, 23, 24, 28, 30, 9, 6, 9, 54, 15, 4, 15, 30, 29, 6, 30, 16, 36, 32, 6, 30, 17, 18, 33, 12, 7, 36, 18, 18, 15
OFFSET
1,2
COMMENTS
The fundamental solution of the Pell equation x^2 - 3*(n*y)^2 = 1 is the smallest solution of x^2 - 3*y^2 = 1 satisfying y == 0 (mod n).
For primes p > 2, 2^p-1 is a Mersenne prime if and only if a(2^p-1) = 2^(p-1). For example, a(7) = 4, a(31) = 16, a(127) = 64, but a(2047) = 495 < 1024. - Jianing Song, Jun 02 2022
REFERENCES
Michael J. Jacobson, Jr. and Hugh C. Williams, Solving the Pell Equation, Springer, 2009, pages 1-17.
LINKS
H. W. Lenstra Jr., Solving the Pell Equation, Notices of the AMS, Vol.49, No.2, Feb. 2002, p.182-192.
FORMULA
a(n) <= n.
a(A038754(n)) = A038754(n).
A001075(a(n)) = A002350(3*n^2).
A001353(a(n)) = A002349(3*n^2).
if n | m then a(n) | a(m).
a(3^m) = 3^m and a(2*3^m) = 2*3^m for m>=0.
In general: if p is prime and p == 3 (mod 4) then: a(n) = n iff n = p^m or n = 2*p^m, for m>=0.
a(k*A005385(n)) = a(k)*A005384(n) for n>2 and k > 0 (conjectured).
a(p) | (p-A091338(p)) for p is an odd prime. - A.H.M. Smeets, Aug 02 2018
From Jianing Song, Jun 02 2022: (Start)
a(p) | (p-A091338(p))/2 for p is an odd prime > 3.
a(p^e) = a(p)*p^(e-r) for e >= r, where r is the largest number such that a(p^r) = a(p). r can be greater than 1, for p = 2, 103, 2297860813 (Cf. A238490).
If gcd(m,n) = 1, then a(m*n) = lcm(a(m),a(n)). (End)
MATHEMATICA
With[{s = Array[ChebyshevU[-1 + #, 2] &, 75]}, Table[FirstPosition[s, k_ /; Divisible[k, n]][[1]], {n, Length@ s}]] (* Michael De Vlieger, Jan 15 2018, after Eric W. Weisstein at A001353 *)
PROG
(Python)
xf, yf = 2, 1
x, n = 2*xf, 0
while n < 20000:
n = n+1
y1, y0, i = 0, yf, 1
while y0%n != 0:
y1, y0, i = y0, x*y0-y1, i+1
print(n, i)
CROSSREFS
KEYWORD
nonn
AUTHOR
A.H.M. Smeets, Jan 15 2018
STATUS
approved