This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A298209 Expansion of (1/q) * phi(q) * phi(-q^5) / (f(-q^4) * f(-q^20)) in powers of q where phi(), f() are Ramanujan theta functions. 2
 1, 2, 0, 0, 3, 0, -4, 0, 4, 0, -4, 0, 7, 0, -12, 0, 13, 0, -16, 0, 22, 0, -28, 0, 38, 0, -44, 0, 55, 0, -72, 0, 83, 0, -104, 0, 129, 0, -156, 0, 187, 0, -220, 0, 273, 0, -328, 0, 384, 0, -452, 0, 539, 0, -652, 0, 757, 0, -880, 0, 1041, 0, -1220, 0, 1428, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET -1,2 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). LINKS G. C. Greubel, Table of n, a(n) for n = -1..1000 Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of (1/q) * chi(-q) * chi(q)^3 * chi(-q^5)^3 * chi(q^5) in powers of q where chi() is a Ramanujan theta function. Expansion of eta(q^2)^5 * eta(q^5)^2 / (eta(q)^2 * eta(q^4)^3 * eta(q^10) * eta(q^20)) in powers of q. Euler transform of period 20 sequence [2, -3, 2, 0, 0, -3, 2, 0, 2, -4, 2, 0, 2, -3, 0, 0, 2, -3, 2, 0, ...]. a(2*n) = 0 except n=0. a(2*n + 1) = A058559(n) for all n in Z. a(n) = -(-1)^n * A298203(n). EXAMPLE G.f. = q^-1 + 2 + 3*q^3 - 4*q^5 + 4*q^7 - 4*q^9 + 7*q^11 - 12*q^13 + 13*q^15 + ... MATHEMATICA a[ n_] := SeriesCoefficient[ 1/q EllipticTheta[ 3, 0, q] EllipticTheta[ 4, 0, q^5] / (QPochhammer[ q^4] QPochhammer[ q^20]), {q, 0, n}]; a[ n_] := SeriesCoefficient[ 1/q QPochhammer[ q, q^2] QPochhammer[ -q, q^2]^3 QPochhammer[ q^5, q^10]^3 QPochhammer[ -q^5, q^10], {q, 0, n}]; PROG (PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^5 + A)^2 / (eta(x + A)^2 * eta(x^4 + A)^3 * eta(x^10 + A) * eta(x^20 + A)), n))}; CROSSREFS Cf. A058559, A298203. Sequence in context: A292250 A245492 A298203 * A211871 A194586 A288437 Adjacent sequences:  A298206 A298207 A298208 * A298210 A298211 A298212 KEYWORD sign AUTHOR Michael Somos, Jan 15 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 09:36 EST 2019. Contains 329953 sequences. (Running on oeis4.)