

A296182


Decimal expansion of (2 + phi)/2, with the golden section phi from A001622.


3



1, 8, 0, 9, 0, 1, 6, 9, 9, 4, 3, 7, 4, 9, 4, 7, 4, 2, 4, 1, 0, 2, 2, 9, 3, 4, 1, 7, 1, 8, 2, 8, 1, 9, 0, 5, 8, 8, 6, 0, 1, 5, 4, 5, 8, 9, 9, 0, 2, 8, 8, 1, 4, 3, 1, 0, 6, 7, 7, 2, 4, 3, 1, 1, 3, 5, 2, 6, 3, 0, 2, 3, 1, 4, 0, 9, 4, 5, 1, 2, 2, 4, 8, 5, 3, 6, 0, 3, 6, 0, 2, 0, 9, 4, 6, 9, 5, 5, 6
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

In a regular pentagon this is the distance between a vertex and the midpoint of the opposite side in units of the radius of the circumscribing circle.


LINKS

Table of n, a(n) for n=1..99.


FORMULA

Equals (2 + phi)/2 = (5 + sqrt(5))/4 = (2*phi  1)*phi/2 = with phi from A001622.
Equals 1 + A019863.


EXAMPLE

1.809016994374947424102293417182819058860154589902881431067724311352630231409451...


MATHEMATICA

RealDigits[(5 + Sqrt[5])/4, 10, 111][[1]] (* Robert G. Wilson v, Jan 14 2018 *)


PROG

(PARI) (5 + sqrt(5))/4 \\ Michel Marcus, Jan 08 2018


CROSSREFS

Cf. A001622, A019863.
Sequence in context: A076350 A197617 A005076 * A019863 A243456 A246772
Adjacent sequences: A296179 A296180 A296181 * A296183 A296184 A296185


KEYWORD

nonn,cons,easy


AUTHOR

Wolfdieter Lang, Jan 08 2018


STATUS

approved



