

A296179


Number of points of the inner discrete Theodorus spiral on sheet S_n, n >= 1. First differences of A295339.


2



15, 37, 56, 76, 95, 115, 136, 154, 175, 194, 214, 234, 254, 273, 293, 313, 332, 352, 372, 392, 411, 432, 450, 471, 490, 511, 529, 550, 569, 590, 608, 629, 648, 668, 688, 708, 727, 747, 767
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

In the complex plane the punctured sheets S_n are given by rho*exp(i*phi_n), with rho > 0 and 2*Pi*(n1) <= phi_n < 2*Pi*n, for n >= 1.
For the inner discrete Theodorus spiral see the Waldvogel link.
The conjecture stated in A295339 implies that a(n) = A295338(n), for n >= 2.


LINKS

Table of n, a(n) for n=1..39.
Joerg Waldvogel, Analytic Continuation of the Theodorus Spiral.


FORMULA

a(n) = b(n)  b(n1), for n >= 1, with b(n) = A295339(n), and b(0) = 0.
Conjecture: a(n) = A295338(n), for n >= 2 (see a comment above).


CROSSREFS

Cf. A295339, A295338 (outer spiral), A172164.
Sequence in context: A329909 A118867 A260796 * A181362 A082112 A059605
Adjacent sequences: A296176 A296177 A296178 * A296180 A296181 A296182


KEYWORD

nonn


AUTHOR

Wolfdieter Lang, Dec 13 2017


STATUS

approved



