

A019863


Decimal expansion of sine of 54 degrees.


12



8, 0, 9, 0, 1, 6, 9, 9, 4, 3, 7, 4, 9, 4, 7, 4, 2, 4, 1, 0, 2, 2, 9, 3, 4, 1, 7, 1, 8, 2, 8, 1, 9, 0, 5, 8, 8, 6, 0, 1, 5, 4, 5, 8, 9, 9, 0, 2, 8, 8, 1, 4, 3, 1, 0, 6, 7, 7, 2, 4, 3, 1, 1, 3, 5, 2, 6, 3, 0, 2, 3, 1, 4, 0, 9, 4, 5, 1, 2, 2, 4, 8, 5, 3, 6, 0, 3, 6, 0, 2, 0, 9, 4, 6, 9, 5, 5, 6, 8
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Midsphere radius of regular icosahedron with unit edges.
Also half of the golden ratio (A001622).  Stanislav Sykora, Jan 30 2014
Andris Ambainis (see Aaronson link) observes that combining the results of BarakHardtHavivRao with DinurSteurer yields the maximal probability of winning n parallel repetitions of a classical CHSH game (see A201488) asymptotic to this constant to the power of n, an improvement on the naive probability of (3/4)^n. (All the random bits are received upfront but the players cannot communicate or share an entangled state.)  Charles R Greathouse IV, May 15 2014


LINKS

Stanislav Sykora, Table of n, a(n) for n = 0..2000
Scott Aaronson, The NEW Ten Most Annoying Questions in Quantum Computing (2014)
Boaz Barak, Moritz Hardt, Ishay Haviv, and Anup Rao, Rounding Parallel Repetitions of Unique Games (2008)
Irit Dinur and David Steurer, Analytical approach to parallel repetition (2013)
Wikipedia, Exact trigonometric constants
Wikipedia, Platonic solid


FORMULA

Equals [1+sqrt(5)]/4 = cos(Pi/5) = sin(3Pi/10).  R. J. Mathar, Jun 18 2006
Equals 2F1(4/5,1/5;1/2;3/4) / 2 = A019827 + 1/2.  R. J. Mathar, Oct 27 2008
Equals A001622 / 2.  Stanislav Sykora, Jan 30 2014
phi / 2 = (i^(2/5) + i^(2/5)) / 2 = i^(2/5)  (sin(Pi/5))*i = i^(2/5) + (sin(Pi/5))*i = i^(2/5)  (cos(3*Pi/10))*i = i^(2/5) + (cos(3*Pi/10))*i.  Jaroslav Krizek, Feb 03 2014


EXAMPLE

0.80901699437494742410229341718281905886015458990288143106772431135263...


MAPLE

Digits:=100; evalf((1+sqrt(5))/4); # Wesley Ivan Hurt, Mar 27 2014


MATHEMATICA

RealDigits[(1 + Sqrt[5])/4, 10, 111] (* Robert G. Wilson v *)


PROG

(PARI) (1+sqrt(5))/4 \\ Charles R Greathouse IV, Jan 16 2012


CROSSREFS

Cf. A019827, A001622.
Platonic solids midradii: A020765 (tetrahedron), A020761 (octahedron), A010503 (cube), A239798 (dodecahedron).
Sequence in context: A076350 A197617 A005076 * A243456 A246772 A198820
Adjacent sequences: A019860 A019861 A019862 * A019864 A019865 A019866


KEYWORD

nonn,cons,easy


AUTHOR

N. J. A. Sloane


STATUS

approved



