login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A296180 Triangle read by rows: T(n, k) = 3*(n - k)*k + 1, n >= 0, 0 <= k <= n. 0
1, 1, 1, 1, 4, 1, 1, 7, 7, 1, 1, 10, 13, 10, 1, 1, 13, 19, 19, 13, 1, 1, 16, 25, 28, 25, 16, 1, 1, 19, 31, 37, 37, 31, 19, 1, 1, 22, 37, 46, 49, 46, 37, 22, 1, 1, 25, 43, 55, 61, 61, 55, 43, 25, 1, 1, 28, 49, 64, 73, 76, 73, 64, 49, 28, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

This is member m = 3 of the family of triangles T(m; n, k) = m*(n - k)*k + 1, for m >= 0. For m = 0: A000012(n, k) (read as a triangle); for m = 1: A077028 (rascal), for m = 2: T(2, n+1, k+1) = A130154(n, k). Motivated by A130154 to look at this family of triangles.

In general the recurrence is: T(m; n, 0) = 1 and T(m; n, n) = 1 for n >= 0; T(m; n, k) = (T(m; n-1, k-1)*T(m; n-1, k) + m)/T(m; n-2, k-1), for n >= 2, k = 1..n-1.

The general g.f. of the sequence of column k (with leading zeros) is G(m; k, x) = (x^k/(1 - x)^2)*(1 + (m*k - 1)*x), k >= 0.

The general g.f. of the triangle T(m;, n, k) is GT(m; x, t) = (1 - (1 + t)*x + (m+1)*t*x^2)/((1 - t*x)*(1 - x))^2, and G(m; k, x) = (d/dt)^k GT(m; x, t)/k!|_{t=0}.

For a simple combinatorial interpretation see the one given in A130154 by Rogério Serôdio which can be generalized to m >= 3.

LINKS

Table of n, a(n) for n=0..65.

FORMULA

T(n, k) = 3*(n - k)*k + 1, n >= 0, 0 <= k <= n,

Recurrence: T(n, 0) = 1 and T(n, n) = 1 for n >= 0; T(n, k) = (T(n-1, k-1)*T(n-1, k) + 3)/T(n-2, k-1), for n >= 2, k = 1..n-1.

G.f. of column k (with leading zeros): (x^k/(1 - x)^2)*(1 + (3*k-1)*x), k >= 0.

G.f. of triangle: (1 - (1 + t)*x + 4*t*x^2)/((1 - t*x)*(1 - x))^2 = 1 + (1+t)*x +(1 + 4*t + t^2)*x^2 + (1 + 7*t + 7*t^2 + t^3)*x^3 = ...

EXAMPLE

The triangle T(n, k) begins:

n\k   0  1  2  3  4  5  6  7  8  9 10 ...

0:    1

1:    1  1

2:    1  4  1

3:    1  7  7  1

4:    1 10 13 10  1

5:    1 13 19 19 13  1

6:    1 16 25 28 25 16  1

7:    1 19 31 37 37 31 19  1

8:    1 22 37 46 49 46 37 22  1

9:    1 25 43 55 61 61 55 43 25  1

10:   1 28 49 64 73 76 73 64 49 28  1

...

Recurrence: 28 = T(6, 3) = (19*19 + 3)/13 = 28.

MATHEMATICA

Table[3 k (n - k) + 1, {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 20 2017 *)

PROG

(PARI) lista(nn) = for(n=0, nn, for(k=0, n, print1(3*(n - k)*k + 1, ", "))) \\ Iain Fox, Dec 21 2017

CROSSREFS

Cf. A077028, A130154.

Columns (without leading zeros): A000012, A016777, A016921, A016921, A017173, A017533, ...

Sequence in context: A016521 A146880 A152236 * A157172 A131060 A124376

Adjacent sequences:  A296177 A296178 A296179 * A296181 A296182 A296183

KEYWORD

nonn,easy,tabl

AUTHOR

Wolfdieter Lang, Dec 20 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 26 16:05 EST 2020. Contains 338640 sequences. (Running on oeis4.)