The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A296180 Triangle read by rows: T(n, k) = 3*(n - k)*k + 1, n >= 0, 0 <= k <= n. 0
 1, 1, 1, 1, 4, 1, 1, 7, 7, 1, 1, 10, 13, 10, 1, 1, 13, 19, 19, 13, 1, 1, 16, 25, 28, 25, 16, 1, 1, 19, 31, 37, 37, 31, 19, 1, 1, 22, 37, 46, 49, 46, 37, 22, 1, 1, 25, 43, 55, 61, 61, 55, 43, 25, 1, 1, 28, 49, 64, 73, 76, 73, 64, 49, 28, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS This is member m = 3 of the family of triangles T(m; n, k) = m*(n - k)*k + 1, for m >= 0. For m = 0: A000012(n, k) (read as a triangle); for m = 1: A077028 (rascal), for m = 2: T(2, n+1, k+1) = A130154(n, k). Motivated by A130154 to look at this family of triangles. In general the recurrence is: T(m; n, 0) = 1 and T(m; n, n) = 1 for n >= 0; T(m; n, k) = (T(m; n-1, k-1)*T(m; n-1, k) + m)/T(m; n-2, k-1), for n >= 2, k = 1..n-1. The general g.f. of the sequence of column k (with leading zeros) is G(m; k, x) = (x^k/(1 - x)^2)*(1 + (m*k - 1)*x), k >= 0. The general g.f. of the triangle T(m;, n, k) is GT(m; x, t) = (1 - (1 + t)*x + (m+1)*t*x^2)/((1 - t*x)*(1 - x))^2, and G(m; k, x) = (d/dt)^k GT(m; x, t)/k!|_{t=0}. For a simple combinatorial interpretation see the one given in A130154 by Rogério Serôdio which can be generalized to m >= 3. LINKS FORMULA T(n, k) = 3*(n - k)*k + 1, n >= 0, 0 <= k <= n, Recurrence: T(n, 0) = 1 and T(n, n) = 1 for n >= 0; T(n, k) = (T(n-1, k-1)*T(n-1, k) + 3)/T(n-2, k-1), for n >= 2, k = 1..n-1. G.f. of column k (with leading zeros): (x^k/(1 - x)^2)*(1 + (3*k-1)*x), k >= 0. G.f. of triangle: (1 - (1 + t)*x + 4*t*x^2)/((1 - t*x)*(1 - x))^2 = 1 + (1+t)*x +(1 + 4*t + t^2)*x^2 + (1 + 7*t + 7*t^2 + t^3)*x^3 = ... EXAMPLE The triangle T(n, k) begins: n\k   0  1  2  3  4  5  6  7  8  9 10 ... 0:    1 1:    1  1 2:    1  4  1 3:    1  7  7  1 4:    1 10 13 10  1 5:    1 13 19 19 13  1 6:    1 16 25 28 25 16  1 7:    1 19 31 37 37 31 19  1 8:    1 22 37 46 49 46 37 22  1 9:    1 25 43 55 61 61 55 43 25  1 10:   1 28 49 64 73 76 73 64 49 28  1 ... Recurrence: 28 = T(6, 3) = (19*19 + 3)/13 = 28. MATHEMATICA Table[3 k (n - k) + 1, {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 20 2017 *) PROG (PARI) lista(nn) = for(n=0, nn, for(k=0, n, print1(3*(n - k)*k + 1, ", "))) \\ Iain Fox, Dec 21 2017 CROSSREFS Cf. A077028, A130154. Columns (without leading zeros): A000012, A016777, A016921, A016921, A017173, A017533, ... Sequence in context: A016521 A146880 A152236 * A157172 A131060 A124376 Adjacent sequences:  A296177 A296178 A296179 * A296181 A296182 A296183 KEYWORD nonn,easy,tabl AUTHOR Wolfdieter Lang, Dec 20 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 26 16:05 EST 2020. Contains 338640 sequences. (Running on oeis4.)