

A296183


Decimal expansion of (1/2)*sqrt(7 + phi), with the golden section from A001622.


0



1, 4, 6, 7, 8, 2, 4, 4, 0, 9, 5, 2, 1, 6, 1, 3, 6, 2, 8, 0, 9, 8, 1, 6, 3, 7, 2, 6, 4, 6, 7, 1, 2, 1, 3, 3, 7, 5, 4, 2, 5, 6, 5, 5, 5, 9, 8, 8, 8, 4, 2, 0, 0, 2, 0, 5, 1, 0, 2, 9, 9, 2, 9, 7, 5, 2, 3, 2, 9, 4, 3, 8, 3, 3, 9, 9, 6, 9, 5, 4, 4, 9, 3, 8, 2, 1, 4, 5, 9, 9, 3, 8, 1, 8, 3, 4, 2, 7
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

In a regular pentagon inscribed in a unit circle this equals the second largest distance between a vertex and a midpoint of a side. The shortest such distance is (1/2)*sqrt(3  phi) = (1/2)*A182007 = 0.58778525229..., and the longest 1 + phi/2 = (1/2)*(2 + phi) = (1/2)*A296184 = 1.80901699437...


LINKS

Table of n, a(n) for n=1..98.


FORMULA

(1/2)*sqrt(7 + phi). From the comment on the pentagon above this results from sqrt((5/4)^2 + (sqrt(3  phi)/2 + sqrt(7  4*phi)/4)^2).


EXAMPLE

1.467824409521613628098163726467121337542565559888420020510299297523294383...


MATHEMATICA

First@ RealDigits[Sqrt[7 + GoldenRatio]/2, 10, 98] (* Michael De Vlieger, Jan 13 2018 *)


CROSSREFS

Cf. A001622, A182007, A296184.
Sequence in context: A006185 A169788 A300707 * A021876 A261491 A005670
Adjacent sequences: A296180 A296181 A296182 * A296184 A296185 A296186


KEYWORD

nonn,cons,easy


AUTHOR

Wolfdieter Lang, Jan 08 2018


STATUS

approved



