The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A286841 One of the two successive approximations up to 13^n for 13-adic integer sqrt(-1). Here the 8 (mod 13) case (except for n=0). 15
 0, 8, 99, 1958, 28322, 228249, 2827300, 55922199, 808904403, 9781942334, 52199939826, 603633907222, 11356596271444, 11356596271444, 1828607235824962, 37264994707118563, 651495710876207647, 5974828584341646375, 49226908181248336040 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..899 Wikipedia, Hensel's Lemma. FORMULA If n > 0, a(n) = 13^n - A286840(n). a(0) = 0 and a(1) = 8, a(n) = a(n-1) + 4 * (a(n-1)^2 + 1) mod 13^n for n > 1. PROG (Ruby) def A(k, m, n)   ary = [0]   a, mod = k, m   n.times{     b = a % mod     ary << b     a = b ** m     mod *= m   }   ary end def A286841(n)   A(8, 13, n) end p A286841(100) (Python) def A(k, m, n):       ary=[0]       a, mod = k, m for i in range(n):           b=a%mod           ary+=[b, ]           a=b**m           mod*=m       return ary def a286841(n): return A(8, 13, n) print a286841(100) # Indranil Ghosh, Aug 03 2017, after Ruby (PARI) a(n) = if (n, 13^n - truncate(sqrt(-1+O(13^n))), 0); \\ Michel Marcus, Aug 04 2017 CROSSREFS The two successive approximations up to p^n for p-adic integer sqrt(-1): A048898 and A048899 (p=5), A286840 and this sequence (p=13), A286877 and A286878 (p=17). Cf. A286839. Sequence in context: A230343 A293145 A305919 * A316870 A181034 A324067 Adjacent sequences:  A286838 A286839 A286840 * A286842 A286843 A286844 KEYWORD nonn AUTHOR Seiichi Manyama, Aug 01 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 22 13:49 EST 2020. Contains 332136 sequences. (Running on oeis4.)