login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A286842 Least k such that the sum of proper divisors of k*n is a prime number, or -1 if no such k exists. 2
4, 2, 7, 1, 7, 54, 3, 1, 3, 5, 5, 27, 3, 7, 35, 2, 5, 18, 3, 40, 1, 11, 5, 96, 2, 13, 1, 14, 7, 120, 5, 1, 99, 68, 1, 9, 3, 19, 1, 20, 5, 5145000, 3, 88, 80, 23, 5, 48, 2, 1, 323, 52, 5, 6, 1, 7, 1, 116, 7, 60, 5, 124, 1, 2, 1, 1650, 3, 34, 299, 35, 7, 32, 5, 37, 7, 19, 1, 26693550 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Motivated by the fate of sequence A072326.

a(546) > 5*10^9. - Michel Marcus, Aug 06 2017

a(546) = 7975795464. When n is even the search can be sped up by observing that the exponents of the odd prime factors of n*a(n) must be even, otherwise the sum of the proper divisors n*a(n) is even and cannot be prime. So, if n is even, a(n) is equal to c*2^s*m^2, where c is the squarefree part of the odd part of n, s is 0 or 1, and m is a suitable integer. - Giovanni Resta, Aug 06 2017

LINKS

Michel Marcus and Giovanni Resta, Table of n, a(n) for n = 1..1000 (first 545 terms from Michel Marcus)

FORMULA

a(A037020(n)) = 1.

MATHEMATICA

Table[SelectFirst[Range[10^7], PrimeQ[DivisorSigma[1, #] - #] &[# n] &] /. k_ /; MissingQ@ k -> -1, {n, 77}] (* Michael De Vlieger, Aug 01 2017 *)

PROG

(PARI) a(n) = {my(k=1); while (!isprime(sigma(k*n)-k*n), k++); k; }

CROSSREFS

Cf. A001065, A037020, A072326 (dead).

Sequence in context: A299631 A205143 A266394 * A087056 A076129 A260590

Adjacent sequences:  A286839 A286840 A286841 * A286843 A286844 A286845

KEYWORD

nonn

AUTHOR

Altug Alkan, Aug 01 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 4 17:14 EDT 2020. Contains 334828 sequences. (Running on oeis4.)